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! e IMO Compendium is the ultimate collection of challenging high school level mathemat-
ics problems. It is an invaluable resource, not only for students preparing for competitions, 
but for anyone who loves and appreciates math. Training for mathematical olympiads is 
enjoyed by talented students throughout the world. Olympiads have become one of the 
primary ways to recognize and develop talented youth with a potential to excel in areas 
that require abstract thinking. Although the problems appearing at IMO do not involve 
advanced mathematics, they must be di!  cult and their solutions must arise from creative 
and clever insights rather than tedious calculations.

In preparation for the distinguished International Mathematical Olympiad (IMO) competi-
tion, each participating country selects the top six high school students every year through a 
series of national olympiads. " ese students are invited to participate in the IMO, usually held 
in July. " e IMO is a two-day contest where each day competitors are given three problems 
which they work on independently. " e IMO host country appoints a special committee 
to which each country submits up to six problems. From this composite “longlist” of prob-
lems, a “shortlist” of 25-30 problems is created. " e jury, consisting of one professor from 
each country, makes the ' nal selection from the shortlist a few days before the IMO begins.

" e IMO has sparked a burst of creativity among enthusiasts to create new and interest-
ing mathematics problems. It can be safely said that the IMO and shortlisted problems are 
among the well-cra( ed problems created in a given year. " is book attempts to gather all of 
these problems with their solutions. In addition, the book contains all the available longlist 
problems, for a total of more than 2000 problems.

From the reviews of the ' rst edition:

"" e International Mathematical Olympiad, or IMO is the premier international competi-
tion for talented high school mathematics students. … " is book collects statements and 
solutions of all of the problems ever set in the IMO, together with many problems proposed 
for the contest. … serves as a vast repository of problems at the Olympiad level, useful both 
to students … and to faculty looking for hard elementary problems. No library will want to 
be without a copy, nor will anyone involved in mathematics competitions …"

— (Fernando Q. Gouvêa, MathDL, March, 2006)
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3.46 The Forty-Sixth IMO
Mérida, Mexico, July 8–19, 2005

3.46.1 Contest Problems

First Day (July 13)

1. Six points are chosen on the sides of an equilateral triangle ABC: A1,A2 on BC;
B1,B2 on CA; C1,C2 on AB. These points are vertices of a convex hexagon
A1A2B1B2C1C2 with equal side lengths. Prove that the lines A1B2, B1C2 and
C1A2 are concurrent.

2. Let a1,a2, . . . be a sequence of integers with infinitely many positive terms and
infinitely many negative terms. Suppose that for each positive integer n, the num-
bers a1,a2, . . . ,an leave n different remainders on division by n. Prove that each
integer occurs exactly once in the sequence.

3. Let x, y, and z be positive real numbers such that xyz≥ 1. Prove that

x5− x2

x5+ y2+ z2
+

y5− y2

y5+ z2+ x2
+

z5− z2

z5+ x2+ y2
≥ 0.

Second Day (July 14)

4. Consider the sequence a1,a2, . . . defined by

an = 2n+3n+6n−1 (n= 1,2, . . .).

Determine all positive integers that are relatively prime to every term of the
sequence.

5. Let ABCD be a given convex quadrilateral with sides BC and AD equal in length
and not parallel. Let E and F be interior points of the sides BC and AD respec-
tively such that BE =DF . The lines AC and BD meet at P; the lines BD and EF
meet at Q; the lines EF and AC meet at R. Consider all the triangles PQR as E
and F vary. Show that the circumcircles of these triangles have a common point
other than P.

6. In a mathematical competition, six problems were posed to the contestants. Each
pair of problems was solved by more than 2/5 of the contestants. Nobody solved
all six problems. Show that there were at least two contestants who each solved
exactly five problems.

3.46.2 Shortlisted Problems

1. A1 (ROU) Find all monic polynomials p(x) with integer coefficients of degree
two for which there exists a polynomial q(x) with integer coefficients such that
p(x)q(x) is a polynomial having all coefficients±1.
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2. A2 (BGR) Let R+ denote the set of positive real numbers. Determine all func-
tions f :R+ → R+ such that

f (x) f (y) = 2 f (x+ y f (x))

for all positive real numbers x and y.

3. A3 (CZE) Four real numbers p,q,r,s satisfy

p+q+ r+ s= 9 and p2+q2+ r2+ s2 = 21.

Prove that ab− cd ≥ 2 holds for some permutation (a,b,c,d) of (p,q,r,s).

4. A4 (IND) Find all functions f : R → R satisfying the equation

f (x+ y)+ f (x) f (y) = f (xy)+2xy+1

for all real x and y.

5. A5 (KOR)IMO3 Let x,y and z be positive real numbers such that xyz ≥ 1. Prove
that

x5− x2

x5+ y2+ z2
+

y5− y2

y5+ z2+ x2
+

z5− z2

z5+ x2+ y2
≥ 0.

6. C1 (AUS) A house has an even number of lamps distributed among its rooms
in such a way that there are at least three lamps in every room. Each lamp shares
a switch with exactly one other lamp, not necessarily from the same room. Each
change in the switch shared by two lamps changes their states simultaneously.
Prove that for every initial state of the lamps there exists a sequence of changes
in some of the switches at the end of which each room contains lamps that are
on as well as lamps that are off.

7. C2 (IRN) Let k be a fixed positive integer. A company has a special method
to sell sombreros. Each customer can convince two persons to buy a sombrero
after he/she buys one; convincing someone already convinced does not count.
Each of these new customers can convince two others and so on. If each of the
two customers convinced by someone makes at least k persons buy sombreros
(directly or indirectly), then that someone wins a free instructional video. Prove
that if n persons bought sombreros, then at most n/(k+2) of them got videos.

8. C3 (IRN) In anm×n rectangular board ofmn unit squares, adjacent squares are
ones with a common edge, and a path is a sequence of squares in which any two
consecutive squares are adjacent. Each square of the board can be colored black
or white. Let N denote the number of colorings of the board such that there exists
at least one black path from the left edge of the board to its right edge, and letM
denote the number of colorings in which there exist at least two nonintersecting
black paths from the left edge to the right edge. Prove that N2 ≥ 2mnM.

9. C4 (COL) Let n ≥ 3 be a given positive integer. We wish to label each side
and each diagonal of a regular n-gon P1 . . .Pn with a positive integer less than or
equal to r so that:
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(i) every integer between 1 and r occurs as a label;
(ii) in each triangle PiPjPk two of the labels are equal and greater than the third.
Given these conditions:
(a) Determine the largest positive integer r for which this can be done.
(b) For that value of r, how many such labelings are there?

10. C5 (SCG) There are n markers, each with one side white and the other side
black, aligned in a row so that their white sides are up. In each step, if possible,
we choose a marker with the white side up (but not one of the outermost mark-
ers), remove it, and reverse the closest marker to the left and the closest marker
to the right of it. Prove that one can achieve the state with only two markers
remaining if and only if n−1 is not divisible by 3.

11. C6 (ROU)IMO6 In a mathematical competition, six problems were posed to the
contestants. Each pair of problems was solved by more than 2/5 of the contes-
tants. Nobody solved all six problems. Show that there were at least two contes-
tants who each solved exactly five problems.

12. C7 (USA) Let n≥ 1 be a given integer, and let a1, . . . ,an be a sequence of inte-
gers such that n divides the sum a1+ · · ·+an. Show that there exist permutations
! and " of 1,2, . . . ,n such that !(i)+ "(i) ≡ ai (mod n) for all i= 1, . . . ,n.

13. C8 (BGR) Let M be a convex n-gon, n ≥ 4. Some n− 3 of its diagonals are
colored green and some other n− 3 diagonals are colored red, so that no two
diagonals of the same color meet insideM. Find the maximum possible number
of intersection points of green and red diagonals insideM.

14. G1 (HEL) In a triangle ABC satisfying AB+BC = 3AC the incircle has center
I and touches the sides AB and BC at D and E , respectively. Let K and L be the
symmetric points ofD and E with respect to I. Prove that the quadrilateralACKL
is cyclic.

15. G2 (ROU)IMO1 Six points are chosen on the sides of an equilateral triangle ABC:
A1,A2 on BC; B1,B2 on CA;C1,C2 on AB. These points are vertices of a convex
hexagon A1A2B1B2C1C2 with equal side lengths. Prove that the lines A1B2, B1C2
andC1A2 are concurrent.

16. G3 (UKR) Let ABCD be a parallelogram. A variable line l passing through the
point A intersects the rays BC and DC at points X and Y , respectively. Let K and
L be the centers of the excircles of triangles ABX and ADY , touching the sides
BX and DY , respectively. Prove that the size of angle KCL does not depend on
the choice of the line l.

17. G4 (POL)IMO5 Let ABCD be a given convex quadrilateral with sides BC and AD
equal in length and not parallel. Let E and F be interior points of the sides BC
and AD respectively such that BE = DF . The lines AC and BD meet at P; the
lines BD and EF meet at Q; the lines EF and AC meet at R. Consider all the
triangles PQR as E and F vary. Show that the circumcircles of these triangles
have a common point other than P.
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18. G5 (ROU) Let ABC be an acute-angled triangle with AB &= AC; let H be its
orthocenter and M the midpoint of BC. Points D on AB and E on AC are such
that AE = AD and D,H,E are collinear. Prove that HM is orthogonal to the
common chord of the circumcircles of triangles ABC and ADE .

19. G6 (RUS) The median AM of a triangle ABC intersects its incircle # at K and
L. The lines through K and L parallel to BC intersect # again at X and Y . The
lines AX and AY intersect BC at P and Q. Prove that BP=CQ.

20. G7 (KOR) In an acute triangle ABC, let D, E , F , P, Q, R be the feet of perpen-
diculars from A, B, C, A, B, C to BC, CA, AB, EF , FD, DE , respectively. Prove
that p(ABC)p(PQR) ≥ p(DEF)2, where p(T ) denotes the perimeter of triangle
T .

21. N1 (POL)IMO4 Consider the sequence a1,a2, . . . defined by

an = 2n+3n+6n−1 (n= 1,2, . . .).

Determine all positive integers that are relatively prime to every term of the
sequence.

22. N2 (NLD)IMO2 Let a1,a2, . . . be a sequence of integers with infinitely many
positive terms and infinitely many negative terms. Suppose that for each positive
integer n, the numbers a1,a2, . . . ,an leave n different remainders on division by
n. Prove that each integer occurs exactly once in the sequence.

23. N3 (MNG) Let a, b, c, d, e, and f be positive integers. Suppose that the sum
S= a+b+c+d+e+ f divides both abc+de f and ab+bc+ca−de−e f − f d.
Prove that S is composite.

24. N4 (COL) Find all positive integers n> 1 for which there exists a unique integer
a with 0< a≤ n! such that an+1 is divisible by n!.

25. N5 (NLD) Denote by d(n) the number of divisors of the positive integer n. A
positive integer n is called highly divisible if d(n) > d(m) for all positive integers
m< n. Two highly divisible integers m and n with m< n are called consecutive
if there exists no highly divisible integer s satisfying m< s< n.
(a) Show that there are only finitely many pairs of consecutive highly divisible

integers of the form (a,b) with a | b.
(b) Show that for every prime number p there exist infinitely many positive

highly divisible integers r such that pr is also highly divisible.

26. N6 (IRN) Let a and b be positive integers such that an + n divides bn + n for
every positive integer n. Show that a= b.

27. N7 (RUS) Let P(x) = anxn+an−1xn−1+ · · ·+a0, where a0, . . . ,an are integers,
an > 0, n ≥ 2. Prove that there exists a positive integer m such that P(m!) is a
composite number.



326 3 Problems

3.47 The Forty-Seventh IMO
Ljubljana, Slovenia, July 6–18, 2006

3.47.1 Contest Problems

First Day (July 12)

1. Let ABC be a triangle with incenter I. A point P in the interior of the triangle
satisfies

∠PBA+∠PCA= ∠PBC+∠PCB.

Show that AP≥ AI, and that equality holds if and only if P= I.

2. Let P be a regular 2006-gon. A diagonal of P is called good if its endpoints
divide the boundary of P into two parts, each composed of an odd number of
sides ofP . The sides ofP are also called good.
SupposeP has been dissected into triangles by 2003 diagonals, no two of which
have a common point in the interior ofP . Find the maximum number of isosce-
les triangles having two good sides that could appear in such a configuration.

3. Determine the least real numberM such that the inequality
∣∣ab(a2−b2)+bc(b2− c2)+ ca(c2−a2)

∣∣ ≤M(a2+b2+ c2)2

holds for all real numbers a, b, and c.

Second Day (July 13)

4. Determine all pairs (x,y) of integers such that

1+2x+22x+1 = y2.
5. Let P(x) be a polynomial of degree n> 1 with integer coefficients and let k be a
positive integer. Consider the polynomial

Q(x) = P(P(. . .P(P(x)) . . . )),

where P occurs k times. Prove that there are at most n integers t that satisfy the
equality Q(t) = t.

6. Assign to each side b of a convex polygonP the maximum area of a triangle that
has b as a side and is contained in P . Show that the sum of the areas assigned
to the sides ofP is at least twice the area ofP .

3.47.2 Shortlisted Problems

1. A1 (EST) A sequence of real numbers a0, a1, a2, . . . is defined by the formula

ai+1 = [ai] · {ai}, for i≥ 0;

here a0 is an arbitrary number, [ai] denotes the greatest integer not exceeding ai,
and {ai} = ai− [ai]. Prove that ai = ai+2 for i sufficiently large.
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2. A2 (POL) The sequence of real numbers a0, a1, a2, . . . is defined recursively
by a0 = −1 and

n

$
k=0

an−k
k+1

= 0, for n≥ 1.

Show that an > 0 for n≥ 1.

3. A3 (RUS) The sequence c0, c1, . . . , cn, . . . is defined by c0 = 1, c1 = 0, and
cn+2 = cn+1+ cn for n ≥ 0. Consider the set S of ordered pairs (x,y) for which
there is a finite set J of positive integers such that x = $ j∈J c j, y = $ j∈J c j−1.
Prove that there exist real numbers %,& , and M with the following property: an
ordered pair of nonnegative integers (x,y) satisfies the inequalitym<%x+&y<
M if and only if (x,y) ∈ S.
Remark: A sum over the elements of the empty set is assumed to be 0.

4. A4 (SRB) Prove the inequality

$
i< j

aia j
ai+a j

≤
n

2(a1+a2+ · · ·+an)$i< j
aia j

for positive real numbers a1,a2, . . . ,an.

5. A5 (KOR) Let a, b, c be the sides of a triangle. Prove that
√
b+ c−a√

b+
√
c−

√
a

+

√
c+a−b

√
c+

√
a−

√
b

+

√
a+b− c

√
a+

√
b−

√
c
≤ 3.

6. A6 (IRL)IMO3 Determine the smallest numberM such that the inequality

|ab(a2−b2)+bc(b2− c2)+ ca(c2−a2)|≤M(a2+b2+ c2)2

holds for all real numbers a, b, c

7. C1 (FRA) We have n ≥ 2 lamps L1, . . . ,Ln in a row, each of them being either
on or off. Every second we simultaneously modify the state of each lamp as
follows: if the lamp Li and its neighbors (only one neighbor for i = 1 or i = n,
two neighbors for other i) are in the same state, then Li is switched off; otherwise,
Li is switched on.
Initially all the lamps are off except the leftmost one which is on.
(a) Prove that there are infinitely many integers n for which all the lamps will

eventually be off.
(b) Prove that there are infinitely many integers n for which the lamps will

never be all off.

8. C2 (SRB)IMO2 A diagonal of a regular 2006-gon is called odd if its endpoints
divide the boundary into two parts, each composed of an odd number of sides.
Sides are also regarded as odd diagonals. Suppose the 2006-gon has been dis-
sected into triangles by 2003 nonintersecting diagonals. Find the maximum pos-
sible number of isosceles triangles with two odd sides.
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9. C3 (COL) Let S be a finite set of points in the plane such that no three of them
are on a line. For each convex polygon P whose vertices are in S, let a(P) be
the number of vertices of P, and let b(P) be the number of points of S that are
outside P. Prove that for every real number x

$
P
xa(P)(1− x)b(P) = 1,

where the sum is taken over all convex polygons with vertices in S.
Remark. A line segment, a point, and the empty set are considered convex poly-
gons of 2, 1, and 0 vertices respectively.

10. C4 (TWN) A cake has the form of an n×n square composed of n2 unit squares.
Strawberries lie on some of the unit squares so that each row and each column
contains exactly one strawberry; call this arrangementA .
LetB be another such arrangement. Suppose that every grid rectangle with one
vertex at the top left corner of the cake contains no fewer strawberries of arrange-
mentB than of arrangementA . Prove that arrangementB can be obtained from
A by performing a number of switches, defined as follows:
A switch consists in selecting a grid rectangle with only two strawberries, situ-
ated at its top right corner and bottom left corner, and moving these two straw-
berries to the other two corners of that rectangle.

11. C5 (ARG) An (n,k)-tournament is a contest with n players held in k rounds
such that:
(i) Each player plays in each round, and every two players meet at most once.
(ii) If player A meets player B in round i, player C meets player D in round i,

and player A meets player C in round j, then player B meets player D in
round j.

Determine all pairs (n,k) for which there exists an (n,k)-tournament.

12. C6 (COL) A holey triangle is an upward equilateral triangle of side length
n with n upward unit triangular holes cut out. A diamond is a 60◦–120◦ unit
rhombus. Prove that a holey triangle T can be tiled with diamonds if and only if
the following condition holds: every upward equilateral triangle of side length k
in T contains at most k holes, for 1≤ k≤ n.

13. C7 (JPN) Consider a convex polyhedron without parallel edges and without
an edge parallel to any face other than the two faces adjacent to it. Call a pair
of points of the polyhedron antipodal if there exist two parallel planes passing
through these points and such that the polyhedron is contained between these
planes.
Let A be the number of antipodal pairs of vertices, and let B be the number of
antipodal pairs of midpoint edges. Determine the difference A−B in terms of
the numbers of vertices, edges, and faces.

14. G1 (KOR)IMO1 Let ABC be a triangle with incenter I. A point P in the interior
of the triangle satisfies ∠PBA+∠PCA = ∠PBC+ ∠PCB. Show that AP ≥ AI
and that equality holds if and only if P coincides with I.
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15. G2 (UKR) Let ABC be a trapezoid with parallel sides AB >CD. Points K and
L lie on the line segments AB and CD, respectively, so that AK/KB= DL/LC.
Suppose that there are points P andQ on the line segmentKL satisfying∠APB=
∠BCD and ∠CQD= ∠ABC. Prove that the points P, Q, B, andC are concyclic.

16. G3 (USA) Let ABCDE be a convex pentagon such that ∠BAC = ∠CAD =
∠DAE and ∠ABC = ∠ACD = ∠ADE . The diagonals BD and CE meet at P.
Prove that the line AP bisects the side CD.

17. G4 (RUS) A point D is chosen on the side AC of a triangle ABC with ∠C <
∠A< 90◦ in such a way that BD= BA. The incircle of ABC is tangent to AB and
AC at points K and L, respectively. Let J be the incenter of triangle BCD. Prove
that the line KL intersects the line segment AJ at its midpoint.

18. G5 (HEL) In triangle ABC, let J be the center of the excircle tangent to side
BC at A1 and to the extensions of sides AC and AB at B1 and C1, respectively.
Suppose that the lines A1B1 and AB are perpendicular and intersect at D. Let E
be the foot of the perpendicular fromC1 to lineDJ. Determine the angles∠BEA1
and ∠AEB1.

19. G6 (BRA) Circles #1 and #2 with centers O1 and O2 are externally tangent
at point D and internally tangent to a circle # at points E and F , respectively.
Line t is the common tangent of #1 and #2 at D. Let AB be the diameter of #
perpendicular to t, so that A, E , and O1 are on the same side of t. Prove that the
lines AO1, BO2, EF , and t are concurrent.

20. G7 (SVK) In a triangle ABC, let Ma, Mb, Mc, be respectively the midpoints of
the sides BC,CA, AB, and let Ta, Tb, Tc be the midpoints of the arcs BC, CA, AB
of the circumcircle of ABC, not counting the opposite vertices. For i ∈ {a,b,c}
let #i be the circle withMiTi as diameter. Let pi be the common external tangent
to # j, #k ({i, j,k} = {a,b,c}) such that #i lies on the opposite side of pi from
# j, #k. Prove that the lines pa, pb, pc form a triangle similar to ABC and find the
ratio of similitude.

21. G8 (POL) Let ABCD be a convex quadrilateral. A circle passing through the
points A and D and a circle passing through the points B and C are externally
tangent at a point P inside the quadrilateral. Suppose that ∠PAB+∠PDC≤ 90◦
and ∠PBA+∠PCD≤ 90◦. Prove that AB+CD≥ BC+AD.

22. G9 (RUS) Points A1, B1, C1 are chosen on the sides BC, CA, AB of a triangle
ABC respectively. The circumcircles of triangles AB1C1, BC1A1,CA1B1 intersect
the circumcircle of triangle ABC again at points A2, B2,C2 respectively (A2 &= A,
B2 &= B, C2 &= C). Points A3, B3, C3 are symmetric to A1, B1, C1 with respect
to the midpoints of the sides BC, CA, AB, respectively. Prove that the triangles
A2B2C2 and A3B3C3 are similar.

23. G10 (SRB)IMO6 Assign to each side b of a convex polygon P the maximum
area of a triangle that has b as a side and is contained in P . Show that the sum
of the areas assigned to the sides ofP is at least twice the area ofP .
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24. N1 (USA)IMO4 Determine all pairs (x,y) of integers satisfying the equation 1+
2x+22x+1 = y2.

25. N2 (CAN) For x ∈ (0,1) let y ∈ (0,1) be the number whose nth digit after the
decimal point is the 2nth digit after the decimal point of x. Show that if x is
rational then so is y.

26. N3 (SAF) The sequence f (1), f (2), f (3), . . . is defined by

f (n) =
1
n

([n
1

]
+

[n
2

]
+ · · ·+

[n
n

])
,

where [x] denotes the integral part of x.
(a) Prove that f (n+1) > f (n) infinitely often.
(b) Prove that f (n+1) < f (n) infinitely often.

27. N4 (ROU)IMO5 Let P(x) be a polynomial of degree n > 1 with integer co-
efficients and let k be a positive integer. Consider the polynomial Q(x) =
P(P(. . .P(P(x)) . . . )), where P occurs k times. Prove that there are at most n
integers t such that Q(t) = t.

28. N5 (RUS) Find all integer solutions of the equation

x7−1
x−1

= y5−1.

29. N6 (USA) Let a> b> 1 be relatively prime positive integers. Define the weight
of an integer c, denoted by w(c), to be the minimal possible value of |x|+ |y|
taken over all pairs of integers x and y such that ax+ by = c. An integer c is
called a local champion if w(c) ≥ w(c± a) and w(c) ≥ w(c± b). Find all local
champions and determine their number.

30. N7 (EST) Prove that for every positive integer n there exists an integer m such
that 2m+m is divisible by n.
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4.46 Solutions to the Shortlisted Problems of IMO 2005

1. Clearly, p(x) has to be of the form p(x) = x2+ax±1, where a is an integer. For
a = ±1 and a = 0, polynomial p has the required property: it suffices to take
q= 1 and q= x+1, respectively.
Suppose now that |a| ≥ 2. Then p(x) has two real roots, say x1,x2, which are
also roots of p(x)q(x) = xn+an−1xn−1+ · · ·+a0, ai = ±1. Thus

1=

∣∣∣∣
an−1
xi

+ · · ·+
a0
xni

∣∣∣∣ ≤
1
|xi|

+ · · ·+
1

|xi|n
<

1
|xi|−1

,

which implies |x1|, |x2| < 2. This immediately rules out the case |a|≥ 3 and the
polynomials p(x) = x2± 2x− 1. The remaining two polynomials x2± 2x+ 1
satisfy the condition for q(x) = x∓1.
Therefore, the polynomials p(x) with the desired property are x2± x±1, x2±1,
and x2±2x+1.

2. Given y > 0, consider the function !(x) = x+ y f (x), x > 0. This function is
injective: indeed, if !(x1) = !(x2), then f (x1) f (y) = f (!(x1)) = f (!(x2)) =
f (x2) f (y), so f (x1) = f (x2), so x1 = x2 by the definition of ! . Now if x1 > x2
and f (x1) < f (x2), we have !(x1) = !(x2) for y = x1−x2

f (x2)− f (x1)
> 0, which

is impossible; hence f is nondecreasing. The functional equation now yields
f (x) f (y) = 2 f (x+ y f (x)) ≥ 2 f (x) and consequently f (y) ≥ 2 for y> 0. There-
fore

f (x+ y f (x)) = f (xy) = f (y+ x f (y)) ≥ f (2x)

holds for arbitrarily small y> 0, implying that f is constant on the interval (x,2x]
for each x> 0. But then f is constant on the union of all intervals (x,2x] over all
x> 0, that is, on all of R+. Now the functional equation gives us f (x) = 2 for all
x, which is clearly a solution.
Second Solution. In the same way as abovewe prove that f is nondecreasing, and
hence its discontinuity set is at most countable. We can extend f to R∪{0} by
defining f (0) = infx f (x) = limx→0 f (x), and the new function f is continuous at
0 as well. If x is a point of continuity of f we have f (x) f (0) = limy→0 f (x) f (y) =
limy→0 2 f (x+ y f (x)) = 2 f (x), hence f (0) = 2. Now, if f is continuous at 2y,
then 2 f (y) = limx→0 f (x) f (y) = limx→0 2 f (x+ y f (x)) = 2 f (2y). Thus f (y) =
f (2y), for all but countably many values of y. Being nondecreasing f is a con-
stant; hence f (x) = 2.

3. Assume without loss of generality that p≥ q≥ r ≥ s. We have

(pq+ rs)+ (pr+qs)+ (ps+qr)=
(p+q+ r+ s)2− p2−q2− r2− s2

2
= 30.

It is easy to see that pq+ rs≥ pr+ qs≥ ps+ qr, which gives us pq+ rs≥ 10.
Now setting p+ q = x, we obtain x2 + (9− x)2 = (p+ q)2 + (r+ s)2 = 21+
2(pq+rs)≥ 41, which is equivalent to (x−4)(x−5)≥ 0. Since x= p+q≥ r+s,
we conclude that x≥ 5. Thus
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25≤ p2+q2+2pq= 21− (r2+ s2)+2pq≤ 21+2(pq− rs),

or pq− rs≥ 2, as desired.
Remark. The quadruple (p,q,r,s) = (3,2,2,2) shows that the estimate 2 is the
best possible.

4. Setting y = 0 yields ( f (0) + 1)( f (x)− 1) = 0, and since f (x) = 1 for all x is
impossible, we get f (0) = −1. Now plugging in x = 1 and y = −1 gives us
f (1) = 1 or f (−1) = 0. In the first case setting x= 1 in the functional equation
yields f (y+1) = 2y+1, i.e., f (x) = 2x−1, which is one solution.
Suppose now that f (1) = a &= 1 and f (−1) = 0. Plugging (x,y) = (z,1) and
(x,y) = (−z,−1) in the functional equation yields

f (z+1) = (1−a) f (z)+2z+1
f (−z−1) = f (z)+2z+1.

It follows that f (z+1)= (1−a) f (−z−1)+a(2z+1), i.e. f (x)= (1−a) f (−x)+
a(2x−1). Analogously, f (−x) = (1−a) f (x)+a(−2x−1), which together with
the previous equation yields

(a2−2a) f (x) = −2a2x− (a2−2a).

Now a = 2 is clearly impossible. For a &∈ {0,2} we get f (x) = −2ax
a−2 − 1. This

function satisfies the requirements only for a = −2, giving the solution f (x) =
−x−1. In the remaining case, when a= 0, we have f (x) = f (−x). Setting y= z
and y= −z in the functional equation and subtracting yields f (2z) = 4z2−1, so
f (x) = x2−1, which satisfies the equation.
Thus the solutions are f (x) = 2x−1, f (x) = −x−1, and f (x) = x2−1.

5. The desired inequality is equivalent to

x2+ y2+ z2

x5+ y2+ z2
+
x2+ y2+ z2

y5+ z2+ x2
+
x2+ y2+ z2

z5+ x2+ y2
≤ 3. (1)

By the Cauchy inequality we have (x5+ y2+ z2)(yz+ y2+ z2) ≥ (x5/2(yz)1/2+
y2+ z2)2 ≥ (x2+ y2+ z2)2 and therefore

x2+ y2+ z2

x5+ y2+ z2
≤
yz+ y2+ z2

x2+ y2+ z2
.

We get analogous inequalities for the other two summands in (1). Summing
these yields

x2+ y2+ z2

x5+ y2+ z2
+
x2+ y2+ z2

y5+ z2+ x2
+
x2+ y2+ z2

z5+ x2+ y2
≤ 2+

xy+ yz+ zx
x2+ y2+ z2

,

which together with the well-known inequality x2+ y2+ z2 ≥ xy+ yz+ zx gives
us the result.
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Second solution.Multiplying both sides by the common denominator and using
notation in Chapter 2 (Muirhead’s inequality), we get

T5,5,5+4T7,5,0+T5,2,2+T9,0,0 ≥ T5,5,2+T6,0,0+2T5,4,0+2T4,2,0+T2,2,2.

By Schur’s and Muirhead’s inequalities we have that T9,0,0+T5,2,2 ≥ 2T7,2,0 ≥
2T7,1,1. Since xyz≥ 1 we have that T7,1,1 ≥ T6,0,0. Therefore

T9,0,0+T5,2,2 ≥ 2T6,0,0 ≥ T6,0,0+T4,2,0. (2)

Moreover, Muirhead’s inequality combined with xyz≥ 1 gives us T7,5,0 ≥ T5,5,2,
2T7,5,0≥ 2T6,5,1≥ 2T5,4,0, T7,5,0≥ T6,4,2≥ T4,2,0, and T5,5,5≥ T2,2,2. Adding these
four inequalities to (2) yields the desired result.

6. A room will be called economic if some of its lamps are on and some are off.
Two lamps sharing a switch will be called twins. The twin of a lamp l will be
denoted by l̄.
Suppose we have arrived at a state with the minimum possible number of un-
economic rooms, and that this number is strictly positive. Let us choose any
uneconomic room, say R0, and a lamp l0 in it. Let l̄0 be in a room R1. Switch-
ing l0, we make R0 economic; therefore, since the number of uneconomic rooms
cannot be decreased, this change must make room R1 uneconomic. Now choose
a lamp l1 in R1 having the twin l̄1 in a room R2. Switching l1 makes R1 economic,
and thus must make R2 uneconomic. Continuing in this manner we obtain a se-
quence l0, l1, . . . of lamps with li in a room Ri and l̄i &= li+1 in Ri+1 for all i. The
lamps l0, l1, . . . are switched in this order. This sequence has the property that
switching li and l̄i makes room Ri economic and room Ri+1 uneconomic.
Let Rm = Rk with m > k be the first repetition in the sequence (Ri). Let us stop
switching the lamps at lm−1. The room Rk was uneconomic prior to switching
lk. Thereafter, lamps lk and l̄m−1 have been switched in Rk, but since these two
lamps are distinct (indeed, their twins l̄k and lm−1 are distinct), the room Rk is
now economic, as well as all the rooms R0, R1, . . . , Rm−1. This decreases the
number of uneconomic rooms, contradicting our assumption.

7. Let v be the number of video winners. One easily finds that for v= 1 and v= 2,
the number n of customers is at least 2k+ 3 and 3k+ 5 respectively. We prove
by induction on v that if n≥ k+1, then n≥ (k+2)(v+1)−1.
Without loss of generality, we can assume that the total number n of customers
is minimum possible for given v > 0. Consider a person P who was convinced
by nobody but himself. Then P must have won a video; otherwise, P could be
removed from the group without decreasing the number of video winners. Let
Q and R be the two persons convinced by P. We denote by C the set of persons
influenced by P through Q to buy a sombrero, including Q, and by D the set
of all other customers excluding P. Let x be the number of video winners in C .
Then there are v− x−1 video winners in D . We have |C |≥ (k+2)(x+1)−1,
by the induction hypothesis if x> 0 and because P is a winner if x= 0. Similarly,
|D | ≥ (k+ 2)(v− x)− 1. Thus n ≥ 1+(k+ 2)(x+ 1)− 1+(k+ 2)(v− x)− 1,
i.e., n≥ (k+2)(v+1)−1.
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8. Suppose that a two-sided m× n board T is considered, where exactly k of the
squares are transparent. A transparent square is colored only on one side (then
it looks the same from the other side), while a nontransparent one needs to be
colored on both sides, not necessarily in the same color.
LetC =C(T ) be the set of colorings of the board in which there exist two black
paths from the left edge to the right edge, one on top and one underneath, not
intersecting at any transparent square. If k = 0 then |C| = N2. We prove by in-
duction on k that 2k|C|≤N2. This will imply the statement of the problem, since
|C| =M for k = mn.
Let q be a fixed transparent square. Consider any coloring B in C: If q is con-
verted into a nontransparent square, a new board T ′ with k− 1 transparent
squares is obtained, so by the induction hypothesis 2k−1|C(T ′)| ≤ N2. Since
B contains two black paths at most one of which passes through q, color-
ing q in either color on the other side will result in a coloring in C′; hence
|C(T ′)|≥ 2|C(T )|, implying 2k|C(T )|≤ N2 and finishing the induction.
Second solution. By a path we shall mean a black path from the left edge to
the right edge. Let A denote the set of pairs of m× n boards each of which
has a path. Let B denote the set of pairs of boards such that the first board
has two nonintersecting paths. Obviously, |A | = N2 and |B| = 2mnM. To prove
|A |≥ |B|, we will construct an injection f :B → A .
Among paths on a given board we define path x to be lower than y if the set of
squares “under” x is a subset of the squares under y. This relation is a relation
of incomplete order. However, for each board with at least one path there exists
a lowest path (comparing two intersecting paths, we can always take the “lower
branch” on each nonintersecting segment). Now, for a given element of B, we
“swap” the lowest path and all squares underneath on the first board with the
corresponding points on the other board. This swapping operation is the desired
injection f . Indeed, since the first board still contains the highest path (which
didn’t intersect the lowest one), the new configuration belongs to A . On the
other hand, this configuration uniquely determines the lowest path on the original
element ofB; hence no two different elements ofB can go to the same element
of A . This completes the proof.

9. Let [XY ] denote the label of segment XY , where X and Y are vertices of the
polygon. Consider any segment MN with the maximum label [MN] = r. By
condition (ii), for any Pi &= M,N, exactly one of PiM and PiN is labeled by r.
Thus the set of all vertices of the n-gon splits into two complementary groups:
A = {Pi | [PiM] = r} and B = {Pi | [PiN] = r}. We claim that a segment XY
is labelled by r if and only if it joins two points from different groups. Assume
without loss of generality that X ∈ A . If Y ∈ A , then [XM] = [YM] = r, so
[XY ] < r. If Y ∈ B, then [XM] = r and [YM] < r, so [XY ] = r by (ii), as we
claimed.
We conclude that a labeling satisfying (ii) is uniquely determined by groups A

andB and labelings satisfying (ii) within A and B.
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(a) We prove by induction on n that the greatest possible value of r is n− 1.
The degenerate cases n = 1,2 are trivial. If n ≥ 3, the number of different
labels of segments joining vertices inA (resp.B) does not exceed |A |−1
(resp. |B|−1), while all segments joining a vertex in A and a vertex inB

are labeled by r. Therefore r ≤ (|A |−1)+(|B|−1)+1= n−1. Equality
is achieved if all the mentioned labels are different.

(b) Let an be the number of labelings with r = n− 1. We prove by induction
that an = n!(n−1)!

2n−1 . This is trivial for n= 1, so let n≥ 2. If |A | = k is fixed,
the groups A and B can be chosen in

(n
k
)
ways. The set of labels used

within A can be selected among 1,2, . . . ,n− 2 in
(n−2
k−1

)
ways. Now the

segments within groups A and B can be labeled so as to satisfy (ii) in ak
and an−k ways, respectively. In this way, every labeling has been counted
twice, since choosingA is equivalent to choosingB. It follows that

an =
1
2

n−1

$
k=1

(
n
k

)(
n−2
k−1

)
akan−k

=
n!(n−1)!
2(n−1)

n−1

$
k=1

ak
k!(k−1)! ·

an−k
(n− k)!(n− k−1)!

=
n!(n−1)!
2(n−1)

n−1

$
k=1

1
2k−1

·
1

2n−k−1
=
n!(n−1)!
2n−1

.

10. Denote by L the leftmost and by R the rightmost marker. To start with, note that
the parity of the number of black-side-up markers remains unchanged. Hence, if
only two markers remain, these markers must have the same color up.
We shall show by induction on n that the game can be successfully finished if
and only if n ≡ 0 or n ≡ 2 (mod 3), and that the upper sides of L and R will be
black in the first case and white in the second case.
The statement is clear for n = 2,3. Assume that we have finished the game for
some n, and denote by k the position of the marker X (counting from the left) that
was last removed. Having finished the game, we have also finished the subgames
with the k markers from L to X and with the n− k+ 1 markers from X to R
(inclusive). Thereby, before X was removed, the upper side of L had been black
if k ≡ 0 and white if k ≡ 2 (mod 3), while the upper side of R had been black if
n−k+1≡ 0 and white if n−k+1≡ 2 (mod 3). Markers L and R were reversed
upon the removal of X . Therefore, in the final position, L and R are white if and
only if k ≡ n− k+ 1 ≡ 0, which yields n ≡ 2 (mod 3), and black if and only if
k ≡ n− k+1≡ 2, which yields n≡ 0 (mod 3).
On the other hand, a game with n markers can be reduced to a game with n−3
markers by removing the second, fourth, and third markers in this order. This
finishes the induction.
Second solution. An invariant can be defined as follows. To each white marker
with k black markers to its left we assign the number (−1)k. Let S be the sum of
the assigned numbers. Then it is easy to verify that the remainder of S modulo
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3 remains unchanged throughout the game: For example, when a white marker
with two white neighbors and k black markers to its left is removed, S decreases
by 3(−1)t .
Initially, S = n. In the final position with two markers remaining, S equals 0 if
the two markers are black and 2 if these are white (note that, as before, the two
markers must be of the same color). Thus n≡ 0 or 2 (mod 3).
Conversely, a game with n markers is reduced to n− 3 markers as in the first
solution.

11. Assume that there were n contestants, ai of whom solved exactly i problems,
where a0+ · · ·+a5 = n. Let us count the number N of pairs (C,P), where con-
testant C solved the pair of problems P. Each of the 15 pairs of problems was
solved by at least 2n+15 contestants, implying N ≥ 15 · 2n+15 = 6n+ 3. On the
other hand, ai students solved i(i−1)

2 pairs; hence

6n+3≤ N ≤ a2+3a3+6a4+10a5 = 6n+4a5− (3a3+5a2+6a1+6a0).

Consequently a5 ≥ 1. Assume that a5 = 1. Then we must have N = 6n+ 4,
which is possible only if 14 of the pairs of problems were solved by exactly
2n+1
5 students and the remaining one by 2n+1

5 + 1 students, and all students but
the winner solved 4 problems.
The problem t not solved by the winner will be called tough and the pair of
problems solved by 2n+1

5 +1 students special.
Let us count the numberMp of pairs (C,P) for which P contains a fixed problem
p. Let bp be the number of contestants who solved p. Then Mt = 3bt (each of
the bt students solved three pairs of problems containing t), and Mp = 3bp+ 1
for p &= t (the winner solved four such pairs). On the other hand, each of the five
pairs containing p was solved by 2n+1

5 or 2n+15 + 1 students, so Mp = 2n+ 2 if
the special pair contains p, andMp = 2n+1 otherwise.
Now since Mt = 3bt = 2n+ 1 or 2n+ 2, we have 2n+ 1≡ 0 or 2 (mod 3). But
if p &= t is a problem not contained in the special pair, we haveMp = 3bp+1=
2n+1; hence 2n+1≡ 1 (mod 3), which is a contradiction.

12. Suppose that there exist desired permutations ! and " for some sequence
a1, . . . ,an. Given a sequence (bi) with sum divisible by n that differs modulo n
from (ai) in only two positions, say i1 and i2, we show how to construct desired
permutations ! ′ and " ′ for sequence (bi). In this way, starting from an arbitrary
sequence (ai) for which ! and " exist, we can construct desired permutations for
any other sequence with sum divisible by n. All congruences below are modulo
n.
We know that !(i) + "(i) ≡ bi for all i &= i1, i2. We construct the sequence
i1, i2, i3, . . . as follows: for each k ≥ 2, ik+1 is the unique index such that

!(ik−1)+ "(ik+1) ≡ bik . (1)

Let ip = iq be the repetition in the sequence with the smallest q. We claim that
p= 1 or p= 2. Assume to the contrary that p> 2. Summing (1) for k= p, p+1,
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. . . , q−1 and taking the equalities !(ik)+"(ik) = bik for ik &= i1, i2 into account,
we obtain !(ip−1)+!(ip)+"(iq−1)+"(iq)≡ bp+bq−1. Since iq = ip, it follows
that !(ip−1)+ "(iq−1) ≡ bq−1 and therefore ip−1 = iq−1, a contradiction. Thus
p= 1 or p = 2 as claimed.
Now we define the following permutations:

! ′(ik) = !(ik−1) for k = 2,3, . . . ,q−1 and ! ′(i1) = !(iq−1),

" ′(ik) = "(ik+1) for k= 2,3, . . . ,q−1 and " ′(i1) =

{
"(i2) if p= 1,
"(i1) if p= 2;

! ′(i) = !(i) and " ′(i) = "(i) for i &∈ {i1, . . . , iq−1}.

Permutations ! ′ and " ′ have the desired property. Indeed, ! ′(i)+ " ′(i) = bi ob-
viously holds for all i &= i1, but then it must also hold for i= i1.

13. For every green diagonal d, let Cd denote the number of green–red intersection
points on d. The task is to find the maximum possible value of the sum $dCd
over all green diagonals.
Let di and d j be two green diagonals and let the part of polygonM lying between
di and d j have m vertices. There are at most n−m−1 red diagonals intersecting
both di and d j, while each of the remaining m− 2 diagonals meets at most one
of di,d j. It follows that

Cdi +Cdj ≤ 2(n−m−1)+ (m−2)= 2n−m−4. (1)

We now arrange the green diagonals in a sequence d1,d2, . . . ,dn−3 as follows.
It is easily seen that there are two green diagonals d1 and d2 that divide M into
two triangles and an (n− 2)-gon; then there are two green diagonals d3 and d4
that divide the (n−2)-gon into two triangles and an (n−4)-gon, and so on. We
continue this procedure until we end up with a triangle or a quadrilateral. Now,
the part of M between d2k−1 and d2k has at least n− 2k vertices for 1 ≤ k ≤
r, where n− 3 = 2r+ e, e ∈ {0,1}; hence, by (1), Cd2k−1 +Cd2k ≤ n+ 2k− 4.
Moreover,Cdn−3 ≤ n−3. Summing yields

Cd1 +Cd2 + · · ·+Cdn−3 ≤
r

$
k=1

(n+2k−4)+ e(n−3)

= 3r2+ e(3r+1) =

⌈
3
4
(n−3)2

⌉
.

This value is attained in the following example. Let A1A2 . . .An be the n-gon M
and let l =

[ n
2
]
+ 1. The diagonals A1Ai, i = 3, . . . , l, and AlA j, j = l+ 2, . . . ,n

are colored green, whereas the diagonals A2Ai, i= l+1, . . . ,n, and Al+1Aj, j =
3, . . . , l−1 are colored red.
Thus the answer is , 34 (n−3)

2-.

14. Let F be the point of tangency of the incircle with AC and let M and N be the
respective points of tangency of AB and BC with the corresponding excircles. If
I is the incenter and Ia and P respectively the center and the tangency point with
ray AC of the excircle corresponding to A, we have AI

IL = AI
IF = AIa

IaP = AIa
IaN , which
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implies that.AIL∼.AIaN. Thus L lies on AN, and analogouslyK lies onCM.
Define x = AF and y = CF . Since BD = BE , AD = BM = x, and CE = BN =
y, the condition AB+BC = 3AC gives us DM = y and EN = x. The triangles
CLN andMKA are congruent since their altitudes KD and LE satisfy DK = EL,
DM =CE , and AD= EN. Thus∠AKM = ∠CLN, implying that ACKL is cyclic.

15. Let P be the fourth vertex of the rhombusC2A1A2P. Since.C2PC1 is equilateral,
we easily conclude that B1B2C1P is also a rhombus. Thus.PB1A2 is equilateral
and ∠(C2A1,C1B2) = ∠A2PB1 = 60◦. It easily follows that.AC1B2 ∼= .BA1C2
and consequently AC1 = BA1; similarly, BA1 =CB1. Therefore triangle A1B1C1
is equilateral. Now it follows from B1B2 = B2C1 that A1B2 bisects ∠C1A1B1.
Similarly, B1C2 and C1A2 bisect ∠A1B1C1 and ∠B1C1A1; hence A1B2, B1C2,
C1A2 meet at the incenter of A1B1C1, i.e. at the center of ABC.

16. Since ∠ADL= ∠KBA= 180◦− 1
2∠BCD and ∠ALD= 1

2∠AYD= ∠KAB, trian-
gles ABK and LDA are similar. Thus BK

BC = BK
AD = AB

DL = DC
DL , which together with

∠LDC= ∠CBK gives us.LDC∼.CBK. Therefore∠KCL= 360◦−∠BCD−
(∠LCD+∠KCB) = 360◦−∠BCD− (∠CKB+∠KCB) = 180◦−∠CBK, which
is constant.

17. To start with, we note that points B,E,C are the images of D,F,A respect-
ively under the rotation around point O for the angle # = ∠DOB, where O is
the intersection of the perpendicular bisectors of AC and BD. Then OE = OF
and ∠OFE = ∠OAC = 90− #

2 ; hence the points A,F,R,O are on a circle
and ∠ORP = 180◦ −∠OFA. Analogously, the points B,E,Q,O are on a cir-
cle and ∠OQP = 180◦ −∠OEB = ∠OEC = ∠OFA. This shows that ∠ORP =
180◦−∠OQP, i.e. the point O lies on the circumcircle of.PQR, thus being the
desired point.

18. Let O and O1 be the circumcenters of triangles ABC and ADE , respectively.
It is enough to show that HM ‖ OO1. Let AA′ be the diameter of the cir-
cumcircle of ABC. We note that if B1 is the foot of the altitude from B, then
HE bisects ∠CHB1. Since the triangles COM and CHB1 are similar (indeed,
∠CHB= ∠COM = ∠A), we have CE

EB1 = CH
HB1 = CO

OM = 2CO
AH = A′A

AH .
Thus, if Q is the intersection point
of the bisector of ∠A′AH with HA′,
we obtain CE

EB1 = A′Q
QH , which together

with A′C ⊥ AC and HB1 ⊥ AC gives
us QE ⊥ AC. Analogously, QD ⊥ AB.
Therefore AQ is a diameter of the cir-
cumcircle of.ADE andO1 is the mid-
point of AQ. It follows that OO1 is the
line passing through the midpoints of
AQ and AA′; hence OO1‖HM.

A

B C

D

E

H

M

O

A′

Q

B1

O1

Second solution.We again prove that OO1 ‖ HM. Since AA′ = 2AO, it suffices
to prove AQ= 2AO1.
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Elementary calculations of angles give us∠ADE = ∠AED= 90◦− %
2 . Applying

the law of sines to.DAH and.EAH we now haveDE =DH+EH= AH cos&
cos %2

+
AH cos'
cos %2

. Since AH = 2OM = 2Rcos% , we obtain

AO1 =
DE
2sin%

=
AH(cos& + cos')
2sin% cos %2

=
2Rcos% sin %2 cos(

&−'
2 )

sin% cos %2
.

We now calculate AQ. Let N be the intersection of AQ with the circumcircle.
Since∠NAO= &−'

2 , we have AN = 2Rcos(&−'2 ). Noting that.QAH ∼.QNM
(and that MN = R−OM), we have

AQ=
AN ·AH
MN+AH

=
2Rcos(&−'2 ) ·2cos%

1+ cos%
=
2Rcos(&−'2 )cos%

cos2 %2
= 2AO1.

19. We denote byD,E,F the points of tan-
gency of the incircle with BC,CA,AB,
respectively, by I the incenter, and by
Y ′ the intersection of AX and LY . Since
EF is the polar line to the point A
with respect to the incircle, it meets
AL at point R such that A,R;K,L are
conjugate, i.e., KRRL = KA

AL . Then
KX
LY ′ =

KA
AL = KR

RL = KX
LY and therefore LY =

LY , where Y is the intersection of XR
and LY . Thus showing that LY = LY ′

A

B CD

E

F
I

R

K

L

M
Y

X

Y ′

I′

PQ

(which is the same as showing that PM = MQ, i.e., CP = QB) is equivalent to
showing that XY contains R. Since XKYL is an inscribed trapezoid, it is enough
to show that R lies on its axis of symmetry, that is, DI.
Since AM is the median, the triangles ARB and ARC have equal areas, and since
∠(RF,AB) = ∠(RE,AC) we have that 1 =

S.ABR
S.ACR

= (AB·FR)
(AC·ER) . Hence

AB
AC = ER

FR .
Let I′ be the point of intersection of the line through F parallel to IE with the
line IR. Then FI′

EI = FR
RE = AC

AB and ∠I′FI = ∠BAC (angles with orthogonal rays).
Thus the triangles ABC and FII′ are similar, implying that∠FII′ = ∠ABC. Since
∠FID= 180◦−∠ABC, it follows that R, I, and D are collinear.

20. We shall prove the inequalities p(ABC) ≥ 2p(DEF) and p(PQR) ≥ 1
2 p(DEF).

The statement of the problem will immediately follow.
Let Db and Dc be the reflections of D in AB and AC, and let A1,B1,C1 be
the midpoints of BC,CA,AB, respectively. It is easy to see that Db,F,E,Dc are
collinear. Hence p(DEF) =DbF+FE+EDc =DbDc≤DbC1+C1B1+B1Dc =
1
2 (AB+BC+CA) = 1

2 p(ABC).
To prove the second inequality we observe that P, Q, and R are the points of
tangency of the excircles with the sides of .DEF . Let FQ = ER = x, DR =
FP = y, and DQ = EP = z, and let ( ,),* be the angles of .DEF at D,E,F ,
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respectively. Let Q′ and R′ be the projections of Q and R onto EF , respectively.
Then QR ≥ Q′R′ = EF − FQ′ − R′E = EF − x(cos* + cos)). Summing this
with the analogous inequalities for FD and DE , we obtain

p(PQR) ≥ p(DEF)− x(cos*+ cos))− y(cos( + cos*)− z(cos( + cos)).

Assuming without loss of generality that x≤ y≤ z, we also haveDE ≤ FD≤FE
and consequently cos* + cos) ≥ cos( + cos* ≥ cos( + cos) . Now Cheby-
shev’s inequality gives us p(PQR) ≥ p(DEF)− 2

3 (x+ y+ z)(cos) + cos* +

cos( )≥ p(DEF)−(x+y+z)= 1
2 p(DEF), wherewe used x+y+z= 1

2 p(DEF)
and the fact that the sum of the cosines of the angles in a triangle does not exceed
3
2 . This finishes the proof.

21. We will show that 1 is the only such number. It is sufficient to prove that for
every prime number p there exists some am such that p | am. For p = 2,3 we
have p | a2 = 48. Assume now that p> 3. Applying Fermat’s theorem, we have

6ap−2 = 3 ·2p−1+2 ·3p−1+6p−1−6≡ 3+2+1−6= 0 (mod p).

Hence p | ap−2, i.e. gcd(p,ap−2) = p> 1. This completes the proof.

22. It immediately follows from the condition of the problem that all the terms of
the sequence are distinct. We also note that |ai−an|≤ n−1 for all integers i,n
where i< n, because if d = |ai−an|≥ n then {a1, . . . ,ad} contains two elements
congruent to each other modulo d, which is a contradiction. It easily follows
by induction that for every n ∈ N the set {a1, . . . ,an} consists of consecutive
integers. Thus, if we assumed that some integer k did not appear in the sequence
a1,a2, . . . , the same would have to hold for all integers either larger or smaller
than k, which contradicts the condition that infinitely many positive and negative
integers appear in the sequence. Thus, the sequence contains all integers.

23. Let us consider the polynomial

P(x) = (x+a)(x+b)(x+ c)− (x−d)(x− e)(x− f )= Sx2+Qx+R,

where Q= ab+bc+ ca−de− e f− f d and R= abc+de f .
Since S | Q,R, it follows that S | P(x) for every x ∈ Z. Hence, S | P(d) = (d+
a)(d + b)(d+ c). Since S > d+ a, d + b, d + c and thus cannot divide any of
them, it follows that S must be composite.

24. We will show that n has the desired property if and only if it is prime.
For n = 2 we can take only a = 1. For n > 2 and even, 4 | n!, but an + 1 ≡
1,2 (mod 4), which is impossible. Now we assume that n is odd. Obviously
(n!−1)n+1≡ (−1)n+1= 0 (mod n!). If n is composite and d its prime divisor,
then

( n!
d −1

)n
+1=$nk=1

(n
k
) n!k
dk , where each summand is divisible by n! because

d2 | n!; therefore n! divides
( n!
d −1

)n
+1. Thus, all composite numbers are ruled

out.
It remains to show that if n is an odd prime and n! | an+ 1, then n! | a+ 1, and
therefore a= n!−1 is the only relevant value for which n! | an+1. Consider any
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prime number p≤ n. If p | an+1a+1 , we have p | (−a)
n−1 and by Fermat’s theorem

p | (−a)p−1− 1. Therefore p | (−a)(n,p−1)− 1 = −a− 1, i.e. a ≡ −1 (mod p).
But then an+1

a+1 = an−1−an−2+ · · ·−a+1≡ n (mod p), implying that p = n. It
follows that an+1a+1 is coprime to (n−1)! and consequently (n−1)! divides a+1.
Moreover, the above consideration shows that nmust divide a+1. Thus n! | a+1
as claimed. This finishes our proof.

25. We will use the abbreviation HD to denote a “highly divisible integer.” Let
n = 2%2(n)3%3(n) · · · p%p(n) be the factorization of n into primes. We have d(n) =
(%2(n)+1) · · ·(%p(n)+1). We start with the following two lemmas.
Lemma 1. If n is an HD and p,q primes with pk < ql (k, l ∈ N), then

k%q(n) ≤ l%p(n)+ (k+1)(l−1).

Proof. The inequality is trivial if %q(n) < l. Suppose that %q(n) ≥ l. Then
npk/ql is an integer less than q, and d(npk/ql) < d(n), which is equivalent
to (%q(n)+ 1)(%p(n)+ 1) > (%q(n)− l+ 1)(%p(n)+ k+ 1) implying the
desired inequality.

Lemma 2. For each p and k there exist only finitely many HD’s n such that
%p(n) ≤ k.

Proof. It follows from Lemma 1 that if n is an HD with %p(n) ≤ k, then %q(n)
is bounded for each prime q and %q(n) = 0 for q > pk+1. Therefore there
are only finitely many possibilities for n.

We are now ready to prove both parts of the problem.
(a) Suppose that there are infinitely many pairs (a,b) of consecutive HD’s with

a | b. Since d(2a) > d(a), we must have b= 2a. In particular, d(s) ≤ d(a)
for all s < 2a. All but finitely many HD’s a are divisible by 2 and by 37.
Then d(8a/9) < d(a) and d(3a/2) < d(a) yield

(%2(a)+4)(%3(a)−1) < (%2(a)+1)(%3(a)+1)⇒ 3%3(a)−5< 2%2(a),
%2(a)(%3(a)+2)≤ (%2(a)+1)(%3(a)+1)⇒ %2(a) ≤ %3(a)+1.

We now have 3%3(a)−5< 2%2(a) ≤ 2%3(a)+2⇒ %3(a) < 7, which is a
contradiction.

(b) Assume for a given prime p and positive integer k that n is the smallest HD
with %p ≥ k. We show that np is also an HD. Assume the opposite, i.e., that
there exists an HD m< n

p such that d(m) ≥ d( np). By assumption, m must
also satisfy %p(m)+1≤ %p(n). Then

d(mp) = d(m)
%p(m)+2
%p(m)+1

≥ d
(
n
p

)
%p(n)+1
%p(n)

= d(n),

contradicting the initial assumption that n is an HD (since mp < n). This
proves that np is an HD. Since this is true for every positive integer k, the
proof is complete.
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26. Assuming b &= a, it trivially follows that b> a. Let p> b be a prime number and
let n= (a+1)(p−1)+1.We note that n≡ 1 (mod p−1) and n≡−a (mod p). It
follows that rn = r ·(rp−1)a+1≡ r (mod p) for every integer r. We now have an+
n≡ a−a= 0 (mod p). Thus, an+n is divisible by p, and hence by the condition
of the problem bn + n is also divisible by p. However, we also have bn + n ≡
b−a (mod p), i.e., p | b−a, which contradicts p> b. Hence, it must follow that
b = a. We note that b = a trivially fulfills the conditions of the problem for all
a ∈ N.

27. Let p be a prime and k < p an even number. We note that (p− k)!(k− 1)! ≡
(−1)k−1(p− k)!(p− k+1) · · ·(p−1) = (−1)k−1(p−1)!≡ 1 (mod p) by Wil-
son’s theorem. Therefore

(k−1)!nP((p− k)!) = $ni=0 ai[(k−1)!]n−i[(p− k)!(k−1)!]i
≡ $ni=0 ai[(k−1)!]n−i = S((k−1)!) (mod p),

where S(x) = an + an−1x+ · · ·+ a0xn. Hence p | P((p− k)!) if and only if p |
S((k− 1)!). Note that S((k− 1)!) depends only on k. Let k > 2an + 1. Then,
s= (k−1)!/an is an integer that is divisible by all primes smaller than k. Hence
S((k−1)!) = anbk for some bk ≡ 1 (mod s). It follows that bk is divisible only by
primes larger than k. For large enough k we have |bk| > 1. Thus for every prime
divisor p of bk we have p | P((p− k)!).
It remains to select a large enough k for which |P((p− k)!)| > p. We take k =
(q−1)!, where q is a large prime. All the numbers k+ i for i= 1,2, . . . ,q−1 are
composite (by Wilson’s theorem, q | k+1). Thus p = k+q+ r, for some r ≥ 0.
We now have |P((p− k)!)|= |P((q+ r)!)|> (q+ r)!> (q−1)!+q+ r= p, for
large enough q, since n= degP≥ 2. This completes the proof.
Remark. The above solution actually also works for all linear polynomials P
other than P(x) = x+a0. Nevertheless, these particular cases are easily handled.
If |a0| > 1, then P(m!) is composite for m > |a0|, whereas P(x) = x+ 1 and
P(x) = x− 1 are both composite for, say, x = 5!. Thus the condition n ≥ 2 was
redundant.
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4.47 Solutions to the Shortlisted Problems of IMO 2006

1. If a0≥ 0 then ai≥ 0 for each i and [ai+1]≤ ai+1 = [ai]{ai}< [ai] unless [ai] = 0.
Eventually 0 appears in the sequence [ai] and all subsequent ak’s are 0.
Now suppose that a0 < 0; then all ai ≤ 0. Suppose that the sequence never
reaches 0. Then [ai] ≤ −1 and so 1+ [ai+1] > ai+1 = [ai]{ai} > [ai], so the se-
quence [ai] is nondecreasing and hence must be constant from some term on:
[ai] = c < 0 for i ≥ n. The defining formula becomes ai+1 = c{ai} = c(ai− c),
which is equivalent to bi+1 = cbi, where bi = ai− c2

c−1 . Since (bi) is bounded,
we must have either c= −1, in which case ai+1 = −ai−1 and hence ai+2 = ai,
or bi = 0 and thus ai = c2

c−1 for all i≥ n.

2. We use induction on n. We have a1 = 1/2; assume that n≥ 1 and a1, . . . ,an > 0.
The formula gives us (n+ 1)$mk=1

ak
m−k+1 = 1. Writing this equation for n and

n+1 and subtracting yields

(n+2)an+1 =
n

$
k=1

(
n+1

n− k+1
−

n+2
n− k+2

)
ak,

which is positive, as is the coefficient at each ak.
Remark. Using techniques from complex analysis such as contour integrals, one
can obtain the following formula for n≥ 1:

an =
∫ +

1

dx
xn(,2+ ln2(x−1))

> 0.

3. We know that cn = -n−1−.n−1
-−. , where - = 1+

√
5

2 and . = 1−
√
5

2 are the roots of
t2− t−1. Since cn−1/cn→−. , taking % =. and & = 1 is a natural choice. For
every finite set J ⊆ N we have

−1=
+

$
n=0

.2n+1 < .x+ y= $
j∈J
. j−1 <

+

$
n=0

.2n = - .

Thusm=−1 andM= - is an appropriate choice. We now prove that this choice
has the desired properties by showing that for any x,y ∈ N with −1< K = x.+
y< - , there is a finite set J ⊂ N such that K = $ j∈J.

j.
Given such K, there are sequences i1 ≤ · · · ≤ ik with . i1 + · · ·+. ik = K (one
such sequence consists of y zeros and x ones). Consider all such sequences of
minimum length n. Since .m+.m+1 = .m+2, these sequences contain no two
consecutive integers. Order such sequences as follows: If ik = jk for 1≤ k≤ t and
it < jt , then (ir) ≺ ( jr). Consider the smallest sequence (ir)nr=1 in this ordering.
We claim that its terms are distinct. Since 2.2 = 1+.3, replacing two equal
termsm,m bym−2,m+1 form≥ 2 would yield a smaller sequence, so only 0 or
1 can repeat among the ir. But it = it+1 = 0 implies$r.

ir > 2+$+k=0.
2k+3 = - ,

while it = it+1 = 1 similarly implies $r. ir < −1, so both cases are impossible,
proving our claim. Thus J = {i1, . . . , in} is a required set.
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4. Since ab
a+b = 1

4

(
a+b− (a−b)2

a+b

)
, the left hand side of the desired inequality

equals

A=$
i< j

aia j
ai+a j

=
n−1
4 $

k
ak−

1
4$i< j

(ai−a j)2

ai+a j
.

The righthand side of the inequality is equal to

B=
n
2
$aia j
$ak

=
n−1
4 $

k
ak−

1
4$i< j

(ai−a j)2

$ak
.

Now A≤ B follows from the trivial inequality $ (ai−a j)2
ai+a j ≥ $

(ai−a j)2

$ak
.

5. Let x=
√
b+

√
c−

√
a, y=

√
c+

√
a−

√
b, and z=

√
a+

√
b−

√
c. All of these

numbers are positive because a,b,c are sides of a triangle. Then b+ c− a =
x2− 1

2(x− y)(x− z) and
√
b+ c−a√

b+
√
c−

√
a

=

√
1−

(x− y)(y− z)
2x2

≤ 1−
(x− y)(x− z)

4x2
.

Now it is enough to prove that

x−2(x− y)(x− z)+ y−2(y− z)(y− x)+ z−2(z− x)(z− y)≥ 0,

which directly follows from Schur’s inequality.

6. Assume, without loss of generality, that a ≥ b ≥ c. The lefthand side of the
inequality equals L = (a− b)(b− c)(a− c)(a+ b+ c). From (a− b)(b− c) ≤
1
4 (a−c)2 we get L≤ 1

4(a−c)3|a+b+c|. The inequality (a−c)2 ≤ 2(a−b)2+
2(b− c) implies (a− c)2 ≤ 2

3 [(a−b)2+(b− c)2+(a− c)2]. Therefore

L≤
√
2
2

(
(a−b)2+(b− c)2+(a− c)2

3

)3/2
(a+b+ c).

Finally, the mean inequality gives us

L ≤
√
2
2

(
(a−b)2+(b− c)2+(a− c)2+(a+b+ c)2

4

)2

=
9
√
2

32
(a2+b2+ c2)2.

Equality is attained if and only if a− b = b− c and (a− b)2+(b− c)2+(a−
c)2 = 3(a+ b+ c)2, which leads to a =

(
1+ 3√

2

)
b and c =

(
1− 3√

2

)
b. Thus

M = 9
√
2

32 .
Second solution. We have L = |(a− b)(b− c)(c− a)(a+ b+ c)|. Without loss
of generality, assume that a+ b+ c = 1 (the case a+ b+ c = 0 is trivial). The
monic cubic polynomial with roots a−b, b− c, and c−a is of the form
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P(x) = x3+qx+ r, q=
1
2
−
3
2
(a2+b2+ c2), r = −(a−b)(b− c)(c−a).

Then M2 = maxr2/
(
1−2q
3

)4
. Since P(x) has three real roots, its discrimi-

nant (q/3)3 + (r/2)2 must be positive, so r2 ≥ − 4
27q

3. Thus M2 ≤ f (q) =

− 4
27q

3/
(
1−2q
3

)4
. The function f attains its maximum 34/29 at q = −3/2, so

M ≤ 9
√
2

32 . The case of equality is easily computed.
Third solution. Assume that a2+b2+c2 = 1 and write u= (a+b+c)/

√
3, v=

(a+ )b+ )2c)/
√
3, w= (a+ )2b+ )c)/

√
3, where ) = e2, i/3. Then analogous

formulas hold for a,b,c in terms of u,v,w, fromwhich one directly obtains |u|2+
|v|2+ |w|2 = a2+b2+ c2 = 1 and

a+b+ c=
√
3u, |a−b|= |v− )w|, |a− c|= |v− )2w|, |b− c|= |v−w|.

Thus L =
√
3|u||v3−w3|≤

√
3|u|(|v|3+ |w|3) ≤

√
3
2 |u|2(1− |u|2)3 ≤ 9

√
2

32 . It is
easy to trace back a,b,c to the equality case.

7. (a) We show that for n = 2k all lamps will be switched on in n− 1 steps and
off in n steps. For k = 1 the statement is true. Suppose it holds for some k
and let n= 2k+1; define L= {L1, . . . ,L2k} and R= {L2k+1, . . . ,L2k+1}. The
first 2k−1 steps are performed without any influence on or from the lamps
from R; thus after 2k−1 steps the lamps in L are on and those from R are
off. After the 2kth step, L2k and L2k+1 are on and the other lamps are off.
Notice that from now on, L and R will be symmetric (i.e., Li and L2k+1−i
will have the same state) and will never influence each other. Since R starts
with only the leftmost lamp on, in 2k steps all its lamps will be off. The
same will happen to L. There are 2k+2k = 2k+1 steps in total.

(b) We claim that for n = 2k + 1 the lamps cannot be switched off. After the
first step, only L1 and L2 are on. According to (a), after 2k − 1 steps all
lamps but Ln will be on, so after the 2kth step all lamps will be off except
for Ln−1 and Ln. Since this position is symmetric to the one after the first
step, the procedure will never end.

8. We call a triangle odd if it has two odd sides. To any odd isosceles triangle
AiA jAk we assign a pair of sides of the 2006-gon. We may assume that k− j =
j− i > 0 is odd. A side of the 2006-gon is said to belong to triangle AiA jAk
if it lies on the polygonal line AiAi+1 . . .Ak. At least one of the odd number of
sides AiAi+1, . . . ,Aj−1Aj and at least one of the sides AjA j+1, . . . ,Ak−1Ak do not
belong to any other odd isosceles triangle; assign those two sides to .AiA jAk.
This ensures that every two assigned pairs are disjoint; therefore there are at
most 1003 odd isosceles triangles.
An examplewith 1003 odd isosceles triangles can be attained when the diagonals
A2kA2k+2 are drawn for k = 0, . . . ,1002, where A0 = A2006.

9. The number c(P) of points inside P is equal to n− a(P)− b(P), where n = |S|.
Writing y= 1− x, the considered sum becomes
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$
P
xa(P)yb(P)(x+ y)c(P) =$

P

c(P)

$
i=0

(
c(P)

i

)
xa(P)+iyb(P)+c(P)−i

=$
P

a(P)+c(P)

$
k=a(P)

(
c(P)

k−a(P)

)
xkyn−k.

Here the coefficient at xkyn−k is the sum $P
( c(P)
k−a(P)

)
, which equals the number

of pairs (P,Z) of a convex polygon P and a k-element subset Z of S whose con-
vex hull is P, and is thus equal to

(n
k
)
. Now the required statement immediately

follows.

10. Denote by SA (R) the number of strawberries of arrangementA inside rectangle
R. We writeA ≤ B if for every rectangle Q containing the top left corner O we
have SB(Q) ≥ SA (Q). In this ordering, every switch transforms an arrangement
to a larger one. Since the number of arrangements is finite, it is enough to prove
that whenever A < B there is a switch taking A to C with C ≤ B. Consider
the highest row t of the cake that differs inA andB; let X andY be the positions
of the strawberries in t in A and B respectively. Clearly Y is to the left from
X and the strawberry of A in the column of Y is below Y . Now consider the
highest strawberryX ′ ofA below t whose column is between X andY (including
Y ). Let s be the row of X ′. Now switch X ,X ′ to the other two vertices Z,Z′ of
the corresponding rectangle, obtain-
ing an arrangement C . We claim
that C ≤ B. It is enough to ver-
ify that SC (Q) ≤ SB(Q) for those
rectangles Q = OMNP with N ly-
ing inside XZX ′Z′. Let Q′ = OMN1P1
be the smallest rectangle contain-
ing X . Our choice of s ensures that
SC (Q) = SA (Q′) ≥ SB(Q′) ≥ SB(Q),
as claimed.

X ′

O

M N
N1

P P1

t

s

XY Z

Z′

11. Let q be the largest integer such that 2q | n. We prove that an (n,k)-tournament
exists if and only if k< 2q.
The first l rounds of an (n,k)-tournament form an (n, l)-tournament. Thus it is
enough to show that an (n,2q−1)-tournament exists and an (n,2q)-tournament
does not.
If n = 2q, we can label the contestants and rounds by elements of the additive
group Zq

2. If contestants x and x+ j meet in the round labeled j, it is easy to
verify the conditions. If n = 2qp, we can divide the contestants into p disjoint
groups of 2q and perform a (2q,2q− 1)-tournament in each, thus obtaining an
(n,2q−1)-tournament.
For the other direction let Gi be the graph of players with edges between any two
players who met in the first i rounds. We claim that the size of each connected
component of Gi is a power of 2. For i = 1 this is obvious; assume that it holds
for i. Suppose that the componentsC and D merge in the (i+1)th round. Then
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some c ∈ C and d ∈ D meet in this round. Moreover, each player in C meets a
player in D. Indeed, for every c′ ∈ C there is a path c = c0,c1, . . . ,ck = c′ with
c jc j+1 ∈ Gi; then if d j is the opponent of c j in the (i+1)th round, condition (ii)
shows that each d jd j+1 belongs to Gi, so dk ∈ D. Analogously, all players in D
meet players in C, so |C| = |D|, proving our claim. Now if there are 2q rounds,
every component has size at least 2q+1 and is thus divisible by 2q+1, which is
impossible if 2q+1 ! n.

12. Let U and D be the sets of upward and downward unit triangles, respectively.
Two triangles are neighbors if they form a diamond. For A⊆ D, denote by F(A)
the set of neighbors of the elements of A.
If a holey triangle can be tiled with diamonds, in every upward triangle of side l
there are l2 elements of D, so there must be at least as many elements of U and
at most l holes.
Now we pass to the other direction. It is enough to show the condition (ii) of
the marriage theorem: For every set X ⊂ D we have |F(X)| ≥ |X |. Assume the
contrary, that |F(X)| < |X | for some set X . Note that any two elements of D
with a common neighbor must share a vertex; this means that we can focus
on connected sets X . Consider an upward triangle of side 3. It contains three
elements of D; if two of them are in X , adding the third one to X increases F(X)
by at most 1, so |F(X)| < |X | still holds. Continuing this procedure, we will end
up with a set X forming an upward subtriangle of T and satisfying |F(X)|< |X |,
which contradicts the conditions of the problem. This contradiction proves that
|F(X)|≥ |X | for every set X , and an application of the Hall’s marriage theorem
establishes the result.

13. Consider a polyhedron P with v vertices, e edges, and f faces. Consider the
map ! to the unit sphere S taking each vertex, edge, or face x of P to the set
of outward unit normal vectors (i.e., points on S) to the support planes of P

containing x. Thus ! maps faces to points on S, edges to shorter arcs of big
circles connecting some pairs of these points, and vertices to spherical regions
formed by these arcs. These points, arcs, and regions on S form a “spherical
polyhedron” G .
We now translate the conditions of the problem into the language of G . Denote
by x the image of x through reflection with the center in the center of S. No edge
ofP being parallel to another edge or face means that the big circle of any edge
e of G does not contain any vertex V nonincident to e. Also note that vertices A
and B of P are antipodal if and only if !(A) and !(B) intersect, and that the
midpoints of edges a and b are antipodal if and only if !(a) and !(b) intersect.
Consider the unionF of G and G . The faces ofF are the intersections of faces
of G and G , so their number equals 2A. Similarly, the edges of G and G have 2B
intersections, soF has 2e+4B edges and 2 f +2B vertices. NowEuler’s theorem
forF gives us 2e+4B+2= 2A+2 f +2B, and therefore A−B= e− f +1.

14. The condition of the problem implies that ∠PBC+ ∠PCB = 90◦ −%/2, i.e.,
∠BPC = 90◦ +%/2 = ∠BIC. Thus P lies on the circumcircle # of .BCI. It is



4.47 Shortlisted Problems 2006 747

well known that the center M of # is the second intersection of AI with the cir-
cumcircle of.ABC. Therefore AP≥ AM−MP= AM−MI = AI, with equality
if and only if P≡ I.

15. The relation AK/KB = DL/LC implies that AD, BC, and KL have a common
point O. Moreover, since ∠APB= 180◦ −∠ABC and ∠DQC = 180◦ −∠BCD,
line BC is tangent to the circles APB andCQD. These two circles are homothetic
with respect to O, so if OP meets circle APB again at P′, we have ∠PQC =
∠PP′B= ∠PBC, showing that P,Q,B,C lie on a circle.

16. Let the diagonals AC and BD meet at Q and AD and CE meet at R. The quadri-
laterals ABCD and ACDE are similar, so AQ/QC = AR/RD. Now if AP meets
CD at M, Ceva’s theorem gives us CM

MD = CQ
QA ·

AR
RD = 1.

17. Let M be the point on AC such that JM ‖ KL. It is enough to prove that AM =
2AL.
From ∠BDA = % we obtain that ∠JDM = 90◦ − %

2 = ∠KLA = ∠JMD; hence
JM = JD, and the tangency point of the incircle of.BCD with CD is the mid-
point T of segmentMD. Therefore,DM = 2DT = BD+CD−BC= AB−BC+
CD, which gives us

AM = AD+DM = AC+AB−BC= 2AL.

18. Assume that A1B1 and CJ intersect
at K. Then JK is parallel and equal
to C1D and DC1/C1J = JK/JB1 =
JB1/JC = C1J/JC, so the right tri-
angles DC1J and C1JC are similar;
hence C1C ⊥ DJ. Thus E belongs to
CC1. The points A1, B1, and E lie on
the circle with diameter CJ. Therefore
∠DBA1 = ∠A1CJ= ∠A1ED, implying

A

J

C1

B1

A1

B

C

D

K

E

that BEA1D is cyclic; hence ∠A1EB= 90◦. Likewise, ADEB1 is cyclic because
∠EB1A= ∠EJC = ∠EDC1, so ∠AEB1 = 90◦.
Second solution. The segments JA1, JB1, JC1 are tangent to the circles with
diameters A1B, AB1, C1D. Since JA21 = JB21 = JC21 = JD · JE , E lies on the first
two circles (with diameters A1B and AB1), so ∠AEB1 = ∠A1EB= 90◦.

19. The homothety with center E mapping
#1 to # maps D to B, so D lies on BE;
analogously,D lies on AF . Let AE and
BF meet at point C. The lines BE and
AF are altitudes of triangle ABC, so D
is the orthocenter and C lies on t. Let
the line through D parallel to AB meet
AC atM. The centersO1 andO2 are the
midpoints of DM and DN respectively.

A B

C

O K

E

FDO1M O2

P
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We have thus reduced the problem to a classical triangle geometry problem:
If CD and EF intersect at P, we should prove that points A, O1 and P are
collinear (analogously, so are B, O2, P). By Menelaus’s theorem for triangle
CDM, this is equivalent to CA

AM = CP
PD , which is again equivalent to

CK
KD = CP

PD
(because DM ‖ AB), where K is the foot of the altitude from C to AB. The last
equality immediately follows from the fact that the pairsC,D; P,K are harmoni-
cally adjoint.

20. Let I be the incenter of .ABC. It is well known that TaTc and TaTb are the
perpendicular bisectors of the segments BI and CI respectively. Let TaTb meet
AC at P and #b at U , and let TaTc meet AB at Q and #c at V . We have ∠BIQ=
∠IBQ = ∠IBC, so IQ ‖ BC; similarly IP ‖ BC. Hence PQ is the line through I
parallel to BC.
The homothety from Tb mapping #b to the circumcircle # of ABC maps the
tangent t to #b at U to the tangent to # at Ta that is parallel to BC. It follows
that t ‖ BC. Let t meet AC at X . Since XU = XMb and ∠PUMb = 90◦, X is the
midpoint of PMb. Similarly, the tangent to #c at V meets QMc at its midpoint Y .
But since XY ‖ PQ ‖ MbMc, points U,X ,Y,V are collinear, so t coincides with
the common tangent pa. Thus pa runs midway between I andMbMc. Analogous
conclusions hold for pb and pc, so these three lines form a triangle homothetic
to the triangleMaMbMc from center I in ratio 1

2 , which is therefore similar to the
triangle ABC in ratio 1

4 .

21. The following proposition is easy to prove:
Lemma. For an arbitrary point X inside a convex quadrilateral ABCD, the cir-

cumcircles of triangles ADX and BCX are tangent at X if and only if
∠ADX+∠BCX = ∠AXB.

Let Q be the second intersection point of the circles ABP and CDP (we assume
Q &≡ P; the opposite case is similarly handled). It follows from the conditions
of the problem that Q lies inside quadrilateral ABCD (since ∠BCP+ ∠BAP <
180◦,C is outside the circumcircle of APB; the same holds for D). If Q is inside
.APD (the other case is similar), we have ∠BQC= ∠BQP+∠PQC= ∠BAP+
∠CDP ≤ 90◦. Similarly, ∠AQD≤ 90◦. Moreover, ∠ADQ+∠BCQ= ∠ADP+
∠BCP = ∠APB = ∠AQB implies that circles ADQ and BCQ are tangent at Q.
Therefore the interiors of the semicircles with diameters AD and BC are disjoint,
and if M, N are the midpoints of AD and BC respectively, we have 2MN ≥
AD+BC. On the other hand, 2MN ≤ AB+CD because −→BA+

−→
CD = 2−−→MN, and

the statement of the problem immediately follows.

22. We work with oriented angles modulo 180◦. For two lines a,b we denote by
∠(l,m) the angle of counterclockwise rotation transforming a to b; also, by
∠ABC we mean ∠(BA,BC).
It is well known that the circles AB1C1, BC1A1, andCA1B1 have a common point,
say P. Let O be the circumcenter of ABC. Set ∠PB1C = ∠PC1A= ∠PA1B= * .
Let A2P,B2P,C2P meet the circle ABC again at A4,B4,C4, respectively. Since
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∠A4A2A = ∠PA2A = ∠PC1A = ! and thus ∠A4OA = 2! etc., !ABC is the
image of!A4B4C4 under rotationR about O by 2! .
Therefore ∠(AB4,PC1) = ∠B4AB +
∠AC1P = ! − ! = 0, so AB4 ‖ PC1.
Let PC1 intersect A4B4 at C5; define
A5,B5 analogously. Then ∠B4C5P =
∠A4B4A= ! , so AB4C5C1 is an isosce-
les trapezoid with BC3 = AC1 = B4C5.
Similarly, AC3 = A4C5, soC3 is the im-
age of C5 under R; similar statements
hold for A5,B5. Thus !A3B3C3 ∼=
!A5B5C5. It remains to show that
!A5B5C5 ∼!A2B2C2.
We have seen that∠A4B5P= ∠B4C5P,

A B

C

P

A1

B1
C1

A2

B2

C2

A4

B4

C4

A5 B5

C5

which implies that P lies on the circle A4B5C5. Analogously, P lies on the circle
C4A5B5. Therefore

∠A2B2C2 = ∠A2B2B4+∠B4B2C2 = ∠A2A4B4+∠B4C4C2
= ∠PA4C5+∠A5C4P= ∠PB5C5+∠A5B5P= ∠A5B5C5,

and similarly for the other angles, which is what we wanted.

23. Let Si be the area assigned to side AiAi+1 of polygon P = A1 . . .An of area S.
We start with the following auxiliary statement.
Lemma. At least one of the areas S1, . . . ,Sn is not smaller than 2S/n.
Proof. It suffices to prove the statement for even n. The case of odd n will

then follow immediately from this case applied to the degenerate 2n-gon
A1A′1 . . .AnA′n, where A′i is the midpoint of AiAi+1.
Let n = 2m. For i = 1,2, . . . ,m, denote by Ti the area of the region Pi
inside the polygon bounded by the diagonals AiAm+i, Ai+1Am+i+1 and the
sides AiAi+1, Am+iAm+i+1. We observe that the regionsPi cover the entire
polygon. Indeed, let X be an arbitrary point inside the polygon, to the left
(without loss of generality) of the ray A1Am+1.
Then X is to the right of the ray
Am+1A1, so there is a k such that X is
to the left of ray AkAk+m and to the
right of ray Ak+1Ak+m+1, i.e., X ∈
Pk. It follows that T1+ · · ·+Tm≥ S;
hence at least one Ti is not smaller
than 2S/n, say T1 ≥ 2S/n.
Let O be the intersection point of
A1Am+1 and A2Am+2, and let us
assume without loss of generality

A1 A2
A3

Am+1Am+2Am+3

O
X

P1

P1

that SA1A2O ≥ SAm+1Am+2O and A1O ≥ OAm+1. Then required result now
follows from

S1 ≥ SA1A2Am+2 = SA1A2O+SA1Am+2O ≥ SA1A2O+SAm+1Am+2O = T1 ≥
2S
n

.
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If, contrary to the assertion, $ Si
S < 2, we can choose rational numbers qi =

2mi/N with N = m1 + · · ·+mn such that qi > Si/S. However, considering the
given polygon as a degenerate N-gon obtained by division of side AiAi+1 into
mi equal parts for each i and applying the lemma, we obtain Si/mi ≥ 2S/N, i.e.,
Si/S≥ qi for some i, a contradiction.
Equality holds if and only ifP is centrally symmetric.
Second solution. We say that vertexV is assigned to side a of a convex (possibly
degenerate) polygonP if the triangle determined by a and V has the maximum
area Sa among the triangles with side a contained in P . Define !(P) = $a Sa
and ( (P) = !(P)−2[P]. We use induction on the number n of pairwise non-
parallel sides of P to show that ( (P) ≥ 0 for every polygonP . This is obvi-
ously true for n= 2, so let n≥ 3.
There exist two adjacent sides AB and BC whose respective assigned vertices
U and V are distinct. Let the lines through U and V parallel to AB and BC re-
spectively intersect at point X . Assume, without loss of generality, that there are
no sides of P lying on UX and VX . Call the sides and vertices of P lying
within the triangle UVX passive (excluding vertices U and V ). It is easy to see
that no passive vertex is assigned to any side ofP and that vertex B is assigned
to every passive side. Now replace all passive vertices of P by X , obtaining a
polygonP ′. Vertex B is assigned to sidesUX andVX ofP ′. Therefore the sum
of areas assigned to passive sides increases by the area S of the part of quadri-
lateral BUXV lying outsideP; the other assigned areas do not change. Thus !
increases by S. On the other hand, the area of the polygon also increases by S,
so ( must decrease by S.
Note that the change from P to P ′ decreases the number of nonparallel sides.
Thus by the inductive hypothesis we have ( (P) ≥ ( (P ′) ≥ 0.
Third solution. To each convex n-gon P = A1A2 . . .An we assign a centrally
symmetric 2n-gonQ, called the associate of P , as follows. Attach the 2n vec-
tors ±−−−−→

AiAi+1 at a common origin and label them b1, . . . , b2n counterclockwise
so that bn+i = −bi for 1 ≤ i ≤ n. Then take Q to be the polygon B1B2 . . .B2n
with −−−−→BiBi+1 = bi. Denote by ai the side ofP corresponding to bi (i= 1, . . . ,n).
The distance between the parallel sides BiBi+1 and Bn+iBn+i+1 ofQ equals twice
the maximum height ofP to the side ai. Thus, ifO is the center ofQ, the area of
.BiBi+1O (i= 1, . . . ,n) is exactly the area Si assigned to side ai ofP; therefore
[Q] = 2$Si. It remains to show that d(P) = [Q]−4[P]≥ 0.
(i) Suppose thatP has two parallel sides ai and a j, where a j ≥ ai, and remove
from it the parallelogram D determined by ai and a part of side a j. We
obtain a polygonP ′ with a smaller number of nonparallel sides. Then the
associate of P ′ is obtained from Q by removing a parallelogram similar
to D in ratio 2 (and with area four times that of D); thus d(P ′) = d(P).

(ii) Suppose that there is a side bi (i≤ n) ofQ such that the sum of the angles
at its endpoints is greater than 180◦. Extend the pairs of sides adjacent to bi
and bn+i to their intersectionsU and V , thus enlargingQ by two congruent
triangles to a polygon Q′. Then Q′ is the associate of the polygon P ′
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obtained from P by attaching a triangle congruent to BiBi+1U to the side
ai. Therefore d(P ′) equals d(P) minus twice the area of the attached
triangle.

By repeatedly performing the operations (i) and (ii) to polygonP we will even-
tually reduce it to a parallelogram E , thereby decreasing the value of d. Since
d(E) = 0, it follows that d(P) ≥ 0.
Remark. PolygonQ is the Minkowski sum ofP and a polygon centrally sym-
metric to P . Thus the inequality [Q] ≥ 4[P] is a direct consequence of the
Brunn–Minkowski inequality.

24. Obviously x ≥ 0. For x = 0 the only solutions are (0,±2). Now let (x,y) be a
solution with x> 0. Without loss of generality, assume that y> 0. The equation
rewritten as 2x(1+2x+1) = (y−1)(y+1) shows that one of the factors y±1 is
divisible by 2 but not by 4 and the other by 2x−1 but not by 2x; hence x ≥ 3.
Thus y = 2x−1m+ ) , where m is odd and ) = ±1. Plugging this in the original
equation and simplifying yields

2x−2(m2−8) = 1− )m. (1)

Since m= 1 is obviously impossible, we havem≥ 3 and hence ) =−1. Now (1)
gives us 2(m2− 8) ≤ 1+m, implying m = 3, which leads to x = 4 and y = 23.
Thus all solutions are (0,±2) and (4,±23).

25. If x is rational, its digits repeat periodically starting at some point. If n is the
length of the period of x, the sequence 2,22,23, . . . is eventually periodic modulo
n, so the corresponding digits of x (i.e., the digits of y) also make an eventually
periodic sequence, implying that y is rational.

26. Consider g(n) = [ n1 ]+ [ n2 ]+ · · ·+[ nn ] = n f (n) and define g(0) = 0. Since for any
k the difference [ nk ]− [ n−1k ] equals 1 if k divides n and 0 otherwise, we obtain
that g(n) = g(n− 1) + d(n), where d(n) is the number of positive divisors of
n. Thus g(n) = d(1)+ d(2)+ · · ·+ d(n) and f (n) is the arithmetic mean of the
numbers d(1), . . . ,d(n). Therefore, (a) and (b) will follow if we show that each of
d(n+1) > f (n) and d(n+1) < f (n) holds infinitely often. But d(n+1) < f (n)
holds whenever n+1 is prime, and d(n+1) > f (n) holds whenever d(n+1) >
d(1), . . . ,d(n) (which clearly holds for infinitely many n).

27. We first show that every fixed point x of Q is in fact a fixed point of P ◦ P.
Consider the sequence given by x0 = x and xi+1 = P(xi) for i≥ 0. Assume xk =
x0. We know that u− v divides P(u)−P(v) for every two distinct integers u and
v. In particular,

di = xi+1− xi | P(xi+1)−P(xi) = xi+2− xi+1 = di+1

for all i, which together with dk = d0 implies |d0| = |d1| = · · · = |dk|. Suppose
that d1 = d0 = d &= 0. Then d2 = d (otherwise x3 = x1 and x0 will never occur in
the sequence again). Similarly, d3 = d etc., and hence xi = x0+ id &= x0 for all
i, a contradiction. It follows that d1 = −d0, so x2 = x0 as claimed. Thus we can
assume that Q= P◦P.
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If every integer t with P(P(t)) = t also satisfies P(t) = t, the number of solutions
is clearly at most degP = n. Suppose that P(t1) = t2, P(t2) = t1, P(t3) = t4,
and P(t4) = t3, where t1 &= t2,3,4 (but not necessarily t3 &= t4). Since t1− t3 divides
t2− t4 and vice versa, we conclude that t1− t3 =±(t2− t4). Assume that t1− t3 =
t2−t4, i.e. t1−t2 = t3−t4 = u &= 0. Since the relation t1−t4 =±(t2−t3) similarly
holds, we obtain t1 − t3 + u = ±(t1− t3 − u) which is impossible. Therefore,
we must have t1− t3 = t4− t2, which gives us P(t1) + t1 = P(t3) + t3 = c for
some c. It follows that all integral solutions t of the equation P(P(t)) = t satisfy
P(t)+ t = c, and hence their number does not exceed n.

28. Every prime divisor p of x7−1x−1 = x6+ · · ·+ x+ 1 is congruent to 0 or 1 modulo
7. Indeed, if p | x−1, then x7−1

x−1 ≡ 1+ · · ·+1≡ 7 (mod p), so p = 7; otherwise
the order of x modulo p is 7 and hence p ≡ 1 (mod 7). Therefore every positive
divisor d of x7−1x−1 satisfies d ≡ 0 or 1 (mod 7).
Now suppose (x,y) is a solution of the given equation. Since y−1 and y4+ y3+
y2+ y+1 divide x7−1

x−1 = y5−1, we have y≡ 1 or 2 and y4+ y3+ y2+ y+1≡ 0
or 1 (mod 7). However, y≡ 1 or 2 implies that y4+y3+y2+y+1≡ 5 or 3 (mod
7), which is impossible.

29. All representations of n in the form ax+ by (x,y ∈ Z) are given by (x,y) =
(x0 + bt,y0− at), where x0,y0 are fixed and t ∈ Z is arbitrary. The following
lemma enables us to determine w(n).
Lemma. The equality w(ax+ by) = |x|+ |y| holds if and only if one of the

following conditions holds:
(i) a−b

2 < y≤ a+b
2 and x≥ y− a+b

2 ;
(ii) − a−b

2 ≤ y≤ a−b
2 and x ∈ Z;

(iii) − a+b
2 ≤ y< − a−b

2 and x≤ y+ a+b
2 .

Proof. Without loss of generality, assume that y ≥ 0. We have w(ax+ by) =
|x|+y if and only if |x+b|+ |y−a|≥ |x|+y and |x−b|+(y+a)≥ |x|+y,
where the latter is obviously true and the former clearly implies y< a. Then
the former inequality becomes |x+b|− |x|≥ 2y−a. We distinguish three
cases: if y≤ a−b

2 , then 2y−a≤ b and the previous inequality always holds;
for a−b2 < y ≤ a+b

2 , it holds if and only if x ≥ y− a+b
2 ; and for y > a+b

2 , it
never holds.

Now let n= ax+by be a local champion with w(n) = |x|+ |y|. As in the lemma,
we distinguish three cases:
(i) a−b

2 < y≤ a+b
2 . Then x+1≥ y− a+b

2 by the lemma, sow(n+a)= |x+1|+y
(because n+a= a(x+1)+by). Sincew(n+a)≤w(n), we must have x< 0.
Likewise, w(n−a) equals either |x−1|+y=w(n)+1 or |x+b−1|+a−y.
The condition w(n−a)≤ w(n) leads to x≤ y− a+b−1

2 ; hence x= y− [ a+b2 ]

and w(n) = [ a+b2 ]. Now w(n−b) = −x+ y−1= w(n)−1 and w(n+b) =

(x+b)+ (a−1− y)= a+b−1− [ a+b2 ] ≤ w(n), so n is a local champion.
Conversely, every n = ax+ by with a−b

2 < y ≤ a+b
2 and x = y− [ a+b2 ] is
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a local champion. Thus we obtain b− 1 local champions, which are all
distinct.

(ii) |y| ≤ a−b
2 . Now we conclude from the lemma that w(n−a) = |x−1|+ |y|

and w(n+ a) = |x+ 1|+ |y|, and at least one of these two values exceeds
w(n) = |x|+ |y|. Thus n is not a local champion.

(iii) − a+b
2 ≤ y< − a−b

2 . By taking x,y to −x,−y this case is reduced to case (i),
so we again have b−1 local champions n= ax+by with x= y+[ a+b2 ].

It is easy to check that the sets of local champions from cases (i) and (iii) coincide
if a and b are both odd (so we have b− 1 local champions in total), and are
otherwise disjoint (then we have 2(b−1) local champions).

30. We shall show by induction on n that there exists an arbitrarily largem satisfying
2m ≡−m (mod n). The case n= 1 is trivial; assume that n> 1.
Recall that the sequence of powers of 2 modulo n is eventually periodic with the
period dividing *(n); thus 2x ≡ 2y whenever x ≡ y (mod *(n)) and x and y are
large enough. Let us consider m of the form m ≡ −2k (mod n*(n)). Then the
congruence 2m ≡ −m (mod n) is equivalent to 2m ≡ 2k (mod n), and this holds
whenever−2k ≡m≡ k (mod *(n)) and m,k are large enough. But the existence
of m and k is guartanteed by the inductive hypothesis for *(n), so the induction
is complete.



A

Notation and Abbreviations

A.1 Notation

We assume familiarity with standard elementary notation of set theory, algebra, logic,
geometry (including vectors), analysis, number theory (including divisibility and
congruences), and combinatorics. We use this notation liberally.
We assume familiarity with the basic elements of the game of chess (the movement
of pieces and the coloring of the board).
The following is notation that deserves additional clarification.

◦ B(A,B,C), A−B−C: indicates the relation of betweenness, i.e., that B is be-
tween A and C (this automatically means that A,B,C are different collinear
points).

◦ A= l1∩ l2: indicates that A is the intersection point of the lines l1 and l2.

◦ AB: line through A and B, segment AB, length of segment AB (depending on
context).

◦ [AB: ray starting in A and containing B.

◦ (AB: ray starting in A and containing B, but without the point A.

◦ (AB): open interval AB, set of points between A and B.

◦ [AB]: closed interval AB, segment AB, (AB)∪{A,B}.

◦ (AB]: semiopen interval AB, closed at B and open at A, (AB)∪{B}.
The same bracket notation is applied to real numbers, e.g., [a,b) = {x | a≤ x<
b}.

◦ ABC: plane determined by points A,B,C, triangle ABC (.ABC) (depending on
context).

◦ [AB,C: half-plane consisting of line AB and all points in the plane on the same
side of AB as C.

◦ (AB,C: [AB,C without the line AB.
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◦ 〈−→a ,
−→
b 〉, −→a ·

−→
b : scalar product of −→a and

−→
b .

◦ a,b,c,%,& ,': the respective sides and angles of triangle ABC (unless otherwise
indicated).

◦ k(O,r): circle k with center O and radius r.

◦ d(A, p): distance from point A to line p.

◦ SA1A2...An , [A1A2 . . .An]: area of n-gon A1A2 . . .An (special case for n = 3, SABC:
area of.ABC).

◦ N, Z, Q, R, C: the sets of natural, integer, rational, real, complex numbers (re-
spectively).

◦ Zn: the ring of residues modulo n, n ∈ N.

◦ Zp: the field of residues modulo p, p being prime.

◦ Z[x], R[x]: the rings of polynomials in x with integer and real coefficients re-
spectively.

◦ R∗: the set of nonzero elements of a ring R.

◦ R[%], R(%), where % is a root of a quadratic polynomial in R[x]: {a+b% | a,b ∈
R}.

◦ X0: X ∪{0} for X such that 0 /∈ X .

◦ X+, X−, aX+b, aX+bY : {x | x ∈ X ,x> 0}, {x | x ∈ X ,x< 0}, {ax+b | x ∈ X},
{ax+by | x ∈ X ,y ∈Y} (respectively) for X ,Y ⊆ R, a,b ∈ R.

◦ [x], ;x<: the greatest integer smaller than or equal to x.

◦ ,x-: the smallest integer greater than or equal to x.

The following is notation simultaneously used in different concepts (depending on
context).

◦ |AB|, |x|, |S|: the distance between two points AB, the absolute value of the num-
ber x, the number of elements of the set S (respectively).

◦ (x,y), (m,n), (a,b): (ordered) pair x and y, the greatest common divisor of inte-
gers m and n, the open interval between real numbers a and b (respectively).

A.2 Abbreviations

We tried to avoid using nonstandard notation and abbreviations as much as possible.
However, one nonstandard abbreviation stood out as particularly convenient:

◦ w.l.o.g.: without loss of generality.

Other abbreviations include:

◦ RHS: right-hand side (of a given equation).
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◦ LHS: left-hand side (of a given equation).

◦ QM, AM, GM, HM: the quadratic mean, the arithmetic mean, the geometric
mean, the harmonic mean (respectively).

◦ gcd, lcm: greatest common divisor, least common multiple (respectively).

◦ i.e.: in other words.

◦ e.g.: for example.
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Codes of the Countries of Origin

ARG Argentina
ARM Armenia
AUS Australia
AUT Austria
BEL Belgium
BGR Bulgaria
BLR Belarus
BRA Brazil
CAN Canada
CHN China
COL Colombia
CUB Cuba
CYP Cyprus
CZE Czech Republic
CZS Czechoslovakia
ESP Spain
EST Estonia
FIN Finland
FRA France
FRG Germany, FR
GDR Germany, DR
GEO Georgia
GER Germany
HEL Greece
HKG Hong Kong

HRV Croatia
HUN Hungary
IDN Indonesia
IND India
IRL Ireland
IRN Iran
ISL Iceland
ISR Israel
ITA Italy
JPN Japan
KAZ Kazakhstan
KOR Korea, South
KWT Kuwait
LTU Lithuania
LUX Luxembourg
LVA Latvia
MAR Morocco
MEX Mexico
MKD Macedonia
MNG Mongolia
NLD Netherlands
NOR Norway
NZL New Zealand
PER Peru
PHI Philippines

POL Poland
POR Portugal
PRI Puerto Rico
PRK Korea, North
ROU Romania
RUS Russia
SAF South Africa
SCG Serbia and

Montenegro
SGP Singapore
SRB Serbia
SVK Slovakia
SVN Slovenia
SWE Sweden
THA Thailand
TUN Tunisia
TUR Turkey
TWN Taiwan
UKR Ukraine
UNK United Kingdom
USA United States
USS Soviet Union
UZB Uzbekistan
VNM Vietnam
YUG Yugoslavia
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1981-05 Rafael Marino, COL
1981-07 Juha Oikkonen, FIN – IMO6
1981-08 Arthur Engel, FRG – IMO2
1981-09 Arthur Engel, FRG
1981-12 Jan van de Craats, NLD – IMO3
1981-15 David Monk, UNK – IMO1
1981-19 Vladimir Janković, YUG
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1999-02 Nairi M. Sedrakyan, ARM
1999-07 Nairi M. Sedrakyan, ARM
1999-08 Shin Hitotsumatsu, JPN
1999-09 Jan Villemson, EST – IMO1
1999-10 David Monk, UNK
1999-12 P. Kozhevnikov, RUS – IMO5
1999-15 Marcin Kuczma, POL – IMO2
1999-19 Tetsuya Ando, JPN – IMO6
1999-21 C.R. Pranesachar, IND
1999-22 Andy Liu, jury, CAN
1999-23 David Monk, UNK
1999-24 Ben Green, UNK
1999-25 Ye. Barabanov,

I.Voronovich, BLR – IMO3
1999-26 Mansur Boase, UNK

2000-01 Sándor Dobos, HUN – IMO4
2000-02 Roberto Dvornicich, ITA
2000-03 Federico Ardila, COL
2000-07 Titu Andreescu, USA – IMO2
2000-08 I. Leader, P. Shiu, UNK
2000-10 David Monk, UNK
2000-12 Gordon Lessells, IRL
2000-16 Valeriy Senderov, RUS – IMO5
2000-21 Sergey Berlov, RUS – IMO1
2000-22 C.R. Pranesachar, IND
2000-24 David Monk, UNK
2000-27 L. Emelyanov,

T. Emelyanova, RUS – IMO6
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2001-01 B. Rajarama Bhat, IND
2001-02 Marcin Kuczma, POL
2001-04 Juozas Juvencijus Mačys, LTU
2001-05 O. Mushkarov,

N. Nikolov, BGR
2001-06 Hojoo Lee, KOR – IMO2
2001-07 Federico Ardila, COL
2001-08 Bill Sands, CAN – IMO4
2001-10 Michael Albert, NZL
2001-12 Bill Sands, CAN
2001-14 Christian Bey, GER – IMO3
2001-15 Vyacheslav Yasinskiy, UKR
2001-16 Hojoo Lee, KOR – IMO1
2001-17 Christopher Bradley, UNK
2001-19 Sotiris Louridas, HEL
2001-20 C.R. Pranesachar, IND
2001-22 Shay Gueron, ISR – IMO5
2001-23 Australian PSC, AUS
2001-24 Sandor Ortegón, COL
2001-25 Kevin Buzzard, UNK
2001-27 A. Ivanov, BGR – IMO6
2001-28 F. Petrov, D. !ukić, RUS

2002-02 Mihai Manea, ROU – IMO4
2002-03 G. Bayarmagnai, MNG
2002-04 Stephan Beck, GER
2002-06 L. Panaitopol, ROU – IMO3
2002-08 Hojoo Lee, KOR
2002-09 Hojoo Lee, KOR – IMO2
2002-11 Angelo Di Pasquale, AUS
2002-12 V. Yasinskiy, UKR – IMO6
2002-16 Du"an !ukić, SCG
2002-17 Marcin Kuczma, POL
2002-18 B.J. Venkatachala, IND – IMO5
2002-19 C.R. Pranesachar, IND
2002-20 Omid Naghshineh, IRN
2002-21 Federico Ardila, COL – IMO1
2002-23 Federico Ardila, COL
2002-24 Emil Kolev, BGR
2002-26 Marcin Kuczma, POL
2002-27 Michael Albert, NZL

2003-01 Kiran Kedlaya, USA
2003-02 A. Di Pasquale,

D. Mathews, AUS
2003-04 Finbarr Holland, IRL – IMO5

2003-05 Hojoo Lee, KOR
2003-06 Reid Barton, USA
2003-07 C.G. Moreira, BRA – IMO1
2003-09 Juozas Juvencijus Mačys, LTU
2003-12 Dirk Laurie, SAF
2003-13 Matti Lehtinen, FIN – IMO4
2003-15 C.R. Pranesachar, IND
2003-17 Hojoo Lee, KOR
2003-18Waldemar Pompe, POL – IMO3
2003-19 Dirk Laurie, SAF
2003-20 Marcin Kuczma, POL
2003-21 Zoran %unić, USA
2003-22 A. Ivanov, BGR – IMO2
2003-23 Laurenţiu Panaitopol, ROU
2003-24 Hojoo Lee, KOR
2003-25 Johan Yebbou, FRA – IMO6

2004-01 Hojoo Lee, KOR – IMO4
2004-02 Mihai Bălună, ROU
2004-03 Dan Brown, CAN
2004-04 Hojoo Lee, KOR – IMO2
2004-07 Finbarr Holland, IRL
2004-08 Guihua Gong, PRI
2004-09 Horst Sewerin, GER
2004-10 Norman Do, AUS
2004-11 Marcin Kuczma, POL
2004-12 A. Slinko, S. Marshall, NZL
2004-14 J. Villemson,

M. Pettai, EST – IMO3
2004-15 Marcin Kuczma, POL
2004-16 D. Şerbănescu,

V. Vornicu, ROU – IMO1
2004-18 Hojoo Lee, KOR
2004-19Waldemar Pompe, POL – IMO5
2004-20 Du"an !ukić, SCG
2004-21 B. Green, E. Crane, UNK
2004-23 Du"an !ukić, SCG
2004-26 Mohsen Jamali, IRN
2004-27 Jaros'aw Wróblewski, POL
2004-28 M. Jamali,

A. Morabi, IRN – IMO6
2004-29 John Murray, IRL
2004-30 Alexander Ivanov, BGR

2005-02 Nikolai Nikolov, BGR
2005-04 B.J. Venkatachala, IND
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2005-05 Hojoo Lee, KOR – IMO3
2005-06 Australian PSC, AUS
2005-09 Federico Ardila, COL
2005-10 Du"an !ukić, SCG
2005-11 R. Gologan,

D. Schwarz, ROU – IMO6
2005-12 R. Liu, Z. Feng, USA
2005-13 Alexander Ivanov, BGR
2005-14 Dimitris Kontogiannis, HEL
2005-15 Bogdan Enescu, ROU – IMO1
2005-16 Vyacheslav Yasinskiy, UKR
2005-17Waldemar Pompe, POL – IMO5
2005-20 Hojoo Lee, KOR
2005-21 Mariusz Ska'ba, POL – IMO4
2005-22 N.G. de Bruijn, NLD – IMO2
2005-24 Carlos Caicedo, COL
2005-26 Mohsen Jamali, IRN

2006-01 Härmel Nestra, EST
2006-02 Mariusz Ska'ba, POL
2006-04 Du"an !ukić, SRB
2006-05 Hojoo Lee, KOR
2006-06 Finbarr Holland, IRL – IMO3
2006-08 Du"an !ukić, SRB – IMO2
2006-09 Federico Ardila, COL
2006-12 Federico Ardila, COL
2006-13 Kei Irie, JPN
2006-14 Hojoo Lee, KOR – IMO1
2006-15 Vyacheslav Yasinskiy, UKR
2006-16 Zuming Feng, USA
2006-18 Dimitris Kontogiannis, HEL
2006-20 Tomá" Jurík, SVK
2006-21 Waldemar Pompe, POL
2006-23 Du"an !ukić, SRB – IMO6
2006-24 Zuming Feng, USA – IMO4
2006-25 J.P. Grossman, CAN
2006-26 Johan Meyer, SAF
2006-27 Dan Schwarz, ROU – IMO5
2006-29 Zoran %unić, USA
2006-30 Juhan Aru, EST

2007-01 Michael Albert, NZL – IMO1
2007-02 Nikolai Nikolov, BGR
2007-03 Juhan Aru, EST
2007-05 Vjekoslav Kovač, HRV
2007-06 Waldemar Pompe, POL

2007-07 G. Woeginger, NLD – IMO6
2007-08 Du"an !ukić, SRB
2007-09 Kei Irie, JPN
2007-10 Gerhard Woeginger, NLD
2007-11 Omid Hatami, IRN
2007-12 R. Gologan, D. Schwarz, ROU
2007-13 Vasiliy Astakhov, RUS – IMO3
2007-14 Gerhard Woeginger, AUT
2007-15 Vyacheslav Yasinskiy, UKR
2007-16 Marek Pechal, CZE – IMO4
2007-17 Farzin Barekat, CAN
2007-18 Vyacheslav Yasinskiy, UKR
2007-19 Charles Leytem, LUX – IMO2
2007-20 Christopher Bradley, UNK
2007-21 Z. Feng, O. Golberg, USA
2007-22 Davoud Vakili, IRN
2007-23 Waldemar Pompe, POL
2007-24 Stephan Wagner, AUT
2007-25 Dan Brown, CAN
2007-26 Gerhard Woeginger, NLD
2007-27 Jerzy Browkin, POL
2007-28 M. Jamali,

N. Ahmadi Pour Anari, IRN
2007-29 K. Buzzard,

E. Crane, UNK – IMO5
2007-30 N.V. Tejaswi, IND

2008-01 Hojoo Lee, KOR – IMO4
2008-02 Walther Janous, AUT – IMO2
2008-05 Pavel Novotn&, SVK
2008-06 (ymantas Darbėnas, LTU
2008-09 Vidan Govedarica, SRB
2008-10 Jorge Tipe, PER
2008-11 B. Le Floch,

I. Smilga, FRA – IMO5
2008-14 A. Gavrilyuk, RUS – IMO1
2008-15 Charles Leytem, LUX
2008-16 John Cuya, PER
2008-19 Du"an !ukić, SRB
2008-20 V. Shmarov, RUS – IMO6
2008-21 Angelo Di Pasquale, AUS
2008-24 Du"an !ukić, SRB
2008-26 K. Česnavičius, LTU – IMO3

2009-01 Michal Rolínek, CZE
2009-03 Bruno Le Floch, FRA – IMO5
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2009-06 Gabriel Carroll, USA – IMO3
2009-07 Japanese PSC, JPN
2009-08 Michael Albert, NZL
2009-14 D. Khramtsov, RUS – IMO6
2009-15 Gerhard Woeginger, AUT
2009-16 H. Lee,

P. Vandendriessche,
J. Vonk, BEL – IMO4

2009-17 Sergei Berlov, RUS – IMO2
2009-19 David Monk, UNK
2009-21 Eugene Bilopitov, UKR
2009-24 Ross Atkins, AUS – IMO1
2009-25 Jorge Tipe, PER
2009-28 József Pelikán, HUN
2009-29 Okan Tekman, TUR
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25. M. A"ić et al., 60 Problems for XIX IMO (in Serbian), Society of Mathematicians, Physi-
cists, and Astronomers, Beograd, 1979.

26. A. Baker, A Concise Introduction to the Theory of Numbers, Cambridge University
Press, Cambridge, 1984.

27. E.J. Barbeau, Polynomials, Springer, 2003.
28. E.J. Barbeau, M.S. Klamkin, W.O.J. Moser, Five Hundred Mathematical Challenges,

The Mathematical Association of America, 1995.
29. E.J. Barbeau, Pell’s Equation, Springer-Verlag, 2003.
30. M. Becheanu, International Mathematical Olympiads 1959–2000. Problems. Solutions.

Results, Academic Distribution Center, Freeland, USA, 2001.
31. E.L. Berlekamp, J.H. Conway, R.K. Guy, Winning Ways for Your Mathematical Plays,

Volumes 1-4, AK Peters, Ltd., 2nd edition, 2001 – 2004.
32. G. Berzsenyi, S.B. Maurer, The Contest Problem Book V, The Mathematical Association

of America, 1997.
33. R. Brualdi, Introductory Combinatorics, 4th edition, Prentice-Hall, 2004.
34. C.J. Bradley, Challenges in Geometry : for Mathematical Olympians Past and Present,

Oxford University Press, 2005.
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